Pairwise feature learning with boosting for use in face detection
    1.
    发明授权
    Pairwise feature learning with boosting for use in face detection 有权
    配对功能学习与增强用于面部检测

    公开(公告)号:US07844085B2

    公开(公告)日:2010-11-30

    申请号:US11759460

    申请日:2007-06-07

    申请人: Juwei Lu Hui Zhou

    发明人: Juwei Lu Hui Zhou

    IPC分类号: G06K9/00

    CPC分类号: G06K9/00228 G06K9/6257

    摘要: Systems and methods for training an AdaBoost based classifier for detecting symmetric objects, such as human faces, in a digital image. In one example embodiment, such a method includes first selecting a sub-window of a digital image. Next, the AdaBoost based classifier extracts multiple sets of two symmetric scalar features from the sub-window, one being in the right half side and one being in the left half side of the sub-window. Then, the AdaBoost based classifier minimizes the joint error of the two symmetric features for each set of two symmetric scalar features. Next, the AdaBoost based classifier selects one of the features from the set of two symmetric scalar features for each set of two symmetric scalar features. Finally, the AdaBoost based classifier linearly combines multiple weak classifiers, each of which corresponds to one of the selected features, into a stronger classifier.

    摘要翻译: 用于训练基于AdaBoost的分类器的系统和方法,用于在数字图像中检测对象对象(例如人脸)。 在一个示例实施例中,这种方法包括首先选择数字图像的子窗口。 接下来,基于AdaBoost的分类器从子窗口中提取多组两个对称标量特征,一组位于子窗口的右半边,一个位于子窗口的左半边。 然后,基于AdaBoost的分类器最小化两组对称标量特征的两个对称特征的联合误差。 接下来,基于AdaBoost的分类器从两组对称标量特征中选择两个对称标量特征集合中的一个特征。 最后,基于AdaBoost的分类器将多个弱分类器线性组合,每个弱分类器对应于所选特征之一,成为更强的分类器。

    Adaptive scanning for performance enhancement in image detection systems
    2.
    发明授权
    Adaptive scanning for performance enhancement in image detection systems 有权
    自适应扫描图像检测系统中的性能增强

    公开(公告)号:US07840037B2

    公开(公告)日:2010-11-23

    申请号:US11684478

    申请日:2007-03-09

    CPC分类号: G06K9/00234 G06K9/00248

    摘要: A method and system for efficiently detecting faces within a digital image. One example method includes identifying a digital image comprised of a plurality of sub-windows and performing a first scan of the digital image using a coarse detection level to eliminate the sub-windows that have a low likelihood of representing a face. The subset of the sub-windows that were not eliminated during the first scan are then scanned a second time using a fine detection level having a higher accuracy level than the coarse detection level used during the first scan to identify sub-windows having a high likelihood of representing a face.

    摘要翻译: 一种用于有效检测数字图像内的面部的方法和系统。 一个示例性方法包括识别由多个子窗口组成的数字图像,并使用粗略检测水平执行数字图像的第一次扫描,以消除具有低的表示脸部可能性的子窗口。 然后使用具有比在第一次扫描期间使用的粗略检测级别更高的精度水平的精细检测级别来第二次扫描在第一次扫描期间未被消除的子窗口的子集,以识别具有高似然性的子窗口 代表一个脸。

    Converting A Digital Image From Color To Gray-Scale
    3.
    发明申请
    Converting A Digital Image From Color To Gray-Scale 有权
    将数字图像从颜色转换为灰度级

    公开(公告)号:US20080144892A1

    公开(公告)日:2008-06-19

    申请号:US11948026

    申请日:2007-11-30

    IPC分类号: G06K9/00 G06F15/00

    CPC分类号: G06K9/00228

    摘要: Converting a digital image from color to gray-scale. In one example embodiment, a method for converting a digital image from color to gray-scale is disclosed. First, an unconverted pixel having red, green, and blue color channels is selected from the color digital image. Next, the red color channel of the pixel is multiplied by α. Then, the green color channel of the pixel is multiplied by β. Next, the blue color channel of the pixel is multiplied by γ. Then, the results of the three multiplication operations are added together to arrive at a gray-scale value for the pixel. Finally, these acts are repeated for each remaining unconverted pixel of the color digital image to arrive at a gray-scale digital image. In this example method, α+β+≈1 and α>β.

    摘要翻译: 将数字图像从颜色转换为灰度。 在一个示例实施例中,公开了一种将数字图像从彩色转换成灰度级的方法。 首先,从彩色数字图像中选择具有红色,绿色和蓝色通道的未转换像素。 接下来,将像素的红色通道乘以α。 然后,像素的绿色通道乘以β。 接下来,将像素的蓝色通道乘以伽马。 然后,将三个乘法运算的结果相加在一起,得到像素的灰度值。 最后,对于彩色数字图像的每个剩余的未转换像素重复这些动作,以得到灰度数字图像。 在此示例中,alpha + beta +≈1和alpha>β。

    Converting a digital image from color to gray-scale
    4.
    发明授权
    Converting a digital image from color to gray-scale 有权
    将数字图像从颜色转换为灰度

    公开(公告)号:US07945075B2

    公开(公告)日:2011-05-17

    申请号:US11948026

    申请日:2007-11-30

    IPC分类号: G06K9/00

    CPC分类号: G06K9/00228

    摘要: Converting a digital image from color to gray-scale. In one example embodiment, a method for converting a digital image from color to gray-scale is disclosed. First, an unconverted pixel having red, green, and blue color channels is selected from the color digital image. Next, the red color channel of the pixel is multiplied by α. Then, the green color channel of the pixel is multiplied by β. Next, the blue color channel of the pixel is multiplied by γ. Then, the results of the three multiplication operations are added together to arrive at a gray-scale value for the pixel. Finally, these acts are repeated for each remaining unconverted pixel of the color digital image to arrive at a gray-scale digital image. In this example method, α+β+≈1 and α>β.

    摘要翻译: 将数字图像从颜色转换为灰度。 在一个示例实施例中,公开了一种将数字图像从彩色转换成灰度级的方法。 首先,从彩色数字图像中选择具有红色,绿色和蓝色通道的未转换像素。 接下来,像素的红色通道乘以α。 然后,将像素的绿色通道乘以&bgr。 接下来,将像素的蓝色通道乘以γ。 然后,将三个乘法运算的结果相加在一起,得到像素的灰度值。 最后,对于彩色数字图像的每个剩余的未转换像素重复这些动作,以得到灰度数字图像。 在此示例中,α+&bgr; +≈1和α>&bgr。

    Pairwise Feature Learning With Boosting For Use In Face Detection
    5.
    发明申请
    Pairwise Feature Learning With Boosting For Use In Face Detection 有权
    配对功能学习与提升用于面部检测

    公开(公告)号:US20080304714A1

    公开(公告)日:2008-12-11

    申请号:US11759460

    申请日:2007-06-07

    申请人: Juwei Lu Hui Zhou

    发明人: Juwei Lu Hui Zhou

    IPC分类号: G06K9/00

    CPC分类号: G06K9/00228 G06K9/6257

    摘要: Systems and methods for training an AdaBoost based classifier for detecting symmetric objects, such as human faces, in a digital image. In one example embodiment, such a method includes first selecting a sub-window of a digital image. Next, the AdaBoost based classifier extracts multiple sets of two symmetric scalar features from the sub-window, one being in the right half side and one being in the left half side of the sub-window. Then, the AdaBoost based classifier minimizes the joint error of the two symmetric features for each set of two symmetric scalar features. Next, the AdaBoost based classifier selects one of the features from the set of two symmetric scalar features for each set of two symmetric scalar features. Finally, the AdaBoost based classifier linearly combines multiple weak classifiers, each of which corresponds to one of the selected features, into a stronger classifier.

    摘要翻译: 用于训练基于AdaBoost的分类器的系统和方法,用于在数字图像中检测对象对象(例如人脸)。 在一个示例实施例中,这种方法包括首先选择数字图像的子窗口。 接下来,基于AdaBoost的分类器从子窗口中提取多组两个对称标量特征,一组位于子窗口的右半边,一个位于子窗口的左半边。 然后,基于AdaBoost的分类器最小化两组对称标量特征的两个对称特征的联合误差。 接下来,基于AdaBoost的分类器从两组对称标量特征中选择两个对称标量特征集合中的一个特征。 最后,基于AdaBoost的分类器将多个弱分类器线性组合,每个弱分类器对应于所选特征之一,成为更强的分类器。

    Adaptive Scanning for Performance Enhancement in Image Detection Systems
    6.
    发明申请
    Adaptive Scanning for Performance Enhancement in Image Detection Systems 有权
    自适应扫描用于图像检测系统中的性能增强

    公开(公告)号:US20080219558A1

    公开(公告)日:2008-09-11

    申请号:US11684478

    申请日:2007-03-09

    IPC分类号: G06K9/46

    CPC分类号: G06K9/00234 G06K9/00248

    摘要: A method and system for efficiently detecting faces within a digital image. One example method includes identifying a digital image comprised of a plurality of sub-windows and performing a first scan of the digital image using a coarse detection level to eliminate the sub-windows that have a low likelihood of representing a face. The subset of the sub-windows that were not eliminated during the first scan are then scanned a second time using a fine detection level having a higher accuracy level than the coarse detection level used during the first scan to identify sub-windows having a high likelihood of representing a face.

    摘要翻译: 一种用于有效检测数字图像内的面部的方法和系统。 一个示例性方法包括识别由多个子窗口组成的数字图像,并使用粗略检测水平执行数字图像的第一次扫描,以消除具有低的表示脸部可能性的子窗口。 然后使用具有比在第一次扫描期间使用的粗略检测级别更高的精度水平的精细检测级别来第二次扫描在第一次扫描期间未被消除的子窗口的子集,以识别具有高似然性的子窗口 代表一个脸。

    Two-Level Scanning For Memory Saving In Image Detection Systems
    7.
    发明申请
    Two-Level Scanning For Memory Saving In Image Detection Systems 有权
    用于图像检测系统中的存储器保存的两级扫描

    公开(公告)号:US20080285849A1

    公开(公告)日:2008-11-20

    申请号:US11750099

    申请日:2007-05-17

    IPC分类号: G06K9/46

    CPC分类号: G06K9/00234

    摘要: A method and system for scanning a digital image for detecting the representation of an object, such as a face, and for reducing memory requirements of the computer system performing the image scan. One example method includes identifying an original image and downsamples the original image in an x-dimension and in a y-dimension to obtain a downsampled image that requires less storage space than the original digital image. A first scan is performed of the downsampled image to detect the representation of an object within the downsampled image. Then, the original digital image is divided into at least two image blocks, where each image block contains a portion of the original digital image. A second scan is then performed of each of the image blocks to detect the representation of the object within the image blocks.

    摘要翻译: 一种用于扫描数字图像以检测诸如面部的对象的表示以及用于减少执行图像扫描的计算机系统的存储器需求的方法和系统。 一个示例性方法包括识别原始图像并且以x维度和y维度对原始图像进行下采样以获得比原始数字图像更少的存储空间的下采样图像。 执行下采样图像的第一扫描以检测下采样图像中的对象的表示。 然后,原始数字图像被分成至少两个图像块,其中每个图像块包含原始数字图像的一部分。 然后对每个图像块执行第二扫描以检测图像块内的对象的表示。

    Two-level scanning for memory saving in image detection systems
    8.
    发明授权
    Two-level scanning for memory saving in image detection systems 有权
    用于图像检测系统中的存储器保存的两级扫描

    公开(公告)号:US07983480B2

    公开(公告)日:2011-07-19

    申请号:US11750099

    申请日:2007-05-17

    IPC分类号: G06K9/36

    CPC分类号: G06K9/00234

    摘要: A method and system for scanning a digital image for detecting the representation of an object, such as a face, and for reducing memory requirements of the computer system performing the image scan. One example method includes identifying an original image and downsamples the original image in an x-dimension and in a y-dimension to obtain a downsampled image that requires less storage space than the original digital image. A first scan is performed of the downsampled image to detect the representation of an object within the downsampled image. Then, the original digital image is divided into at least two image blocks, where each image block contains a portion of the original digital image. A second scan is then performed of each of the image blocks to detect the representation of the object within the image blocks.

    摘要翻译: 一种用于扫描数字图像以检测诸如面部的对象的表示以及用于减少执行图像扫描的计算机系统的存储器需求的方法和系统。 一个示例性方法包括识别原始图像并且以x维度和y维度对原始图像进行下采样以获得比原始数字图像更少的存储空间的下采样图像。 执行下采样图像的第一扫描以检测下采样图像中的对象的表示。 然后,原始数字图像被分成至少两个图像块,其中每个图像块包含原始数字图像的一部分。 然后对每个图像块执行第二扫描以检测图像块内的对象的表示。

    Motion adaptive filter and deinterlacer and methods for use therewith

    公开(公告)号:US08629937B1

    公开(公告)日:2014-01-14

    申请号:US13595243

    申请日:2012-08-27

    申请人: Hui Zhou

    发明人: Hui Zhou

    IPC分类号: H04N11/20

    摘要: A device for use in conjunction with a video processing device includes an adaptive filter for processing input pictures into selectively filtered pictures, based on a filter motion data. A deinterlacer selectively interpolates the selectively filtered pictures into selectively deinterlaced pictures, based on deinterlace motion data. A motion detector generates the filter motion data and the deinterlace motion data, based on detecting motion in the input pictures.