Abstract:
According to one embodiment, an image processing device includes storage and a processor. The storage stores a statistical model generated by learning bokeh produced in a first image affected by aberration of an optical system, the bokeh changing nonlinearly in accordance with a distance to a subject in the first image. The processor obtains a second image affected by the aberration of the optical system. The processor inputs the second image to the statistical model and obtains distance information indicating a distance to a subject in the second image.
Abstract:
According to one embodiment, an image display device includes a liquid crystal optical device and an image displayer. The liquid crystal optical device includes a plurality of first electrodes, a plurality of second electrodes, a liquid crystal layer provided between the first and second electrodes, and a first driver. The first driver forms a refractive index distribution in the liquid crystal layer. The image displayer includes a plurality of subpixels. Each of subpixels has a first length along a third direction and a second length along a fourth direction. A distance along the third direction between most proximal electrodes of the first electrodes is shorter than a distance along the fourth direction between most proximal electrodes of the second electrodes.
Abstract:
According to an embodiment, an image display device includes an optical element, a voltage controller, and a display. Regarding the optical element, the refractive-index distribution changes according to the voltage applied thereto. The voltage controller controls, in a first mode, the voltage applied to the optical element in such a way that a first-type refractive-index distribution is achieved which acts as a first-type Fresnel lens; and controls, in a second mode that is different than the first mode, the voltage applied to the optical element in such a way that a second-type refractive-index distribution is achieved which acts as a second-type Fresnel lens having a greater number of steps than the first-type Fresnel lens. The display is disposed on the back side of the optical element and displays images.
Abstract:
According to one embodiment, a liquid crystal optical device includes first and second substrate units and a liquid crystal layer. The first substrate unit includes a first substrate having a first major surface, and a first electrode extending along a first direction. The second substrate unit includes a second substrate and a first opposing electrode. The liquid crystal layer is provided between the first substrate unit and the second substrate unit and includes a first portion provided on a side of the first substrate unit and a second portion provided on a side of the second substrate unit. The first portion has a vertical alignment. The second portion has a horizontal alignment. A long axis of liquid crystal molecules in the second portion aligns along a second direction perpendicular to the first direction.
Abstract:
According to one embodiment, a liquid crystal optical element includes: a pair of first and second substrates; a liquid crystal layer provided between the first and second substrates; first electrodes provided on the first substrate on the liquid crystal layer side and arranged along a first direction; second electrodes provided on the second substrate on the liquid crystal layer side and arranged along a second direction; and a driving unit configured to apply a voltage between the first electrodes and the second electrodes. The first electrodes are divided into electrode regions arranged along a third direction. The first electrodes included in each of the electrode regions are electrically connected to an extension line.
Abstract:
According to one embodiment, an image processing device includes storage and a processor. The storage is configured to store a statistical model generated by learning bokeh that occurs in a first image affected by aberration of an optical system and varies non-linearly in accordance with a distance to a subject in the first image. The processor is configured to acquire a second image affected by the aberration of the optical system, perform color correction on the second image to reduce a number of colors expressed in the second image, and input a third image, obtained by performing the color correction on the second image, into the statistical model and acquire first distance information indicating a distance to a subject in the third image.
Abstract:
A liquid crystal optical device includes a liquid crystal optical unit and a drive unit. The liquid crystal optical unit includes a first substrate unit, a second substrate unit, and a liquid crystal layer. The first substrate unit includes a first substrate, a plurality of first electrodes, and a second electrode. The second substrate unit includes a second substrate and a first opposing electrode. The drive unit applies a first voltage between the first opposing electrode and the first electrodes and applies a second voltage between the first opposing electrode and the second electrode in a refractive index distribution forming operation. The drive unit applies a third voltage between the first opposing electrode and the first electrodes and applies a fourth voltage between the first opposing electrode and the second electrode in a first preliminary operation prior to the refractive index distribution forming operation.
Abstract:
According to one embodiment, an image processing device includes first storage and a processor. The first storage is configured to store a first statistical model generated by learning bokeh which occurs in a first image. The processor is configured to acquire a second image, acquire a bokeh value which indicates bokeh occurring in the second image and an uncertainty level which indicates a level of uncertainty for the bokeh value, generate a first bokeh map based on the bokeh value and uncertainty level, and acquire a second bokeh map obtained by interpolating a bokeh value with respect to the first bokeh map. The bokeh value and the uncertainty level are output from the first statistical model by inputting the second image into the first statistical model.
Abstract:
According to one embodiment, a liquid crystal optical device includes first and second substrate units and a liquid crystal layer. The first substrate unit includes a first substrate having a first major surface, and a first electrode extending along a first direction. The second substrate unit includes a second substrate and a first opposing electrode. The liquid crystal layer is provided between the first substrate unit and the second substrate unit and includes a first portion provided on a side of the first substrate unit and a second portion provided on a side of the second substrate unit. The first portion has a vertical alignment. The second portion has a horizontal alignment. A long axis of liquid crystal molecules in the second portion aligns along a second direction perpendicular to the first direction.
Abstract:
A liquid crystal optical device includes a liquid crystal optical unit and a drive unit. The liquid crystal optical unit includes a first substrate unit, a second substrate unit, and a liquid crystal layer. The first substrate unit includes a first substrate, a plurality of first electrodes, and a second electrode. The second substrate unit includes a second substrate and a first opposing electrode. The drive unit applies a first voltage between the first opposing electrode and the first electrodes and applies a second voltage between the first opposing electrode and the second electrode in a refractive index distribution forming operation. The drive unit applies a third voltage between the first opposing electrode and the first electrodes and applies a fourth voltage between the first opposing electrode and the second electrode in a first preliminary operation prior to the refractive index distribution forming operation.