Abstract:
The rotor includes a rotor core in which the pore is shaped in the center and the magnet is arranged on the circumference of the pore, and a shaft, in which, by means of a knurling tool being partially shaped on the peripheral surface, the knurling tool shaping part with the knurling tool shaped and the non-knurling tool shaping part without the knurling tool shaped are arranged on the peripheral surface and closely inserted into the pore such that the knurling tool shaping part and the non-knurling tool shaping part are present inside the pore.
Abstract:
The disclosure discloses a rotating electrical machine including a stator and a rotor. The rotor includes a cylindrical iron core that is fixed to a shaft and comprises a radial direction and an axial direction, a plurality of permanent magnets that is embedded in the iron core, a plurality of air gaps that are respectively provided in a portion on an inner side of the iron core in the radial direction, a wedge portion that is provided along the axial direction so as to protrude within the air gap, and a non-magnetic reinforcing member that is filled in the air gap.
Abstract:
A rotating electrical machine comprises a stator and a rotor. The rotor includes a rotor iron core in which a permanent magnet is disposed. The rotor iron core comprises a connection part, a plurality of magnetic pole part, a first gap, and a second gap for injection of the adhesive. The connection part is configured to surround a rotational axis. The plurality of magnetic pole parts are provided in an outer portion than the connection part in a radial direction. The first gap is configured to penetrate along an axial direction between the magnetic pole parts in an outer portion than the connection part in the radial direction and in which the permanent magnet is fixed with adhesive. At least one of the second gaps is provided for each of the first gaps in communication with the first gap.