Abstract:
A sensor module for measuring axle speeds and weights of double-track vehicles which travel in a direction of travel (L) along a carriageway with two lanes includes a plurality of piezoelectric strip sensors (A, B, C, D) that are arranged in a first lane group (I) and a second lane group (II). All the strip sensors (A, B, C, D) are spaced from each other in the direction of travel (L) via a secure longitudinal offset (LAD), which is greater than the maximum wheel contact length, and are offset from one another by between one centimeter and fifteen centimeters in the transversal direction. The sensor module also has a module length (LABCD) of less than 80 centimeters.
Abstract:
A WIM (weigh-in-motion) sensor has an oblong hollow profile and includes two force-transmission plates arranged parallel to each other. A tube is arranged between the plates and is integrally formed with the plates and defines a hollow space. Two supports that are arranged opposite one another are formed inside the hollow space, each support extending away from a respective plate and between which a measuring element is received centrally in the tube under preload. The tube includes two tube segments designed to be mirror-symmetrical with respect to each other, which join the plates together and on the inside adjoin the hollow space. The wall thickness of each tube segment has a relatively thick region between at least two relatively thin regions.
Abstract:
A method for determining the weight G of a vehicle (1) while the vehicle is travelling on a section (3) of road (4) uses at least one weigh-in-motion (WIM) sensor (5) that is narrower than the length of the footprint of a wheel in the direction of vehicle travel. When the vehicle (1) travels along this section (3) of road (4) both the wheel loads Fi (t) of all the wheels (2) or twin wheels i, and the speed vi(t) of the vehicle (1) during the entire passing are acquired as time functions, and during evaluation of the data for determining the weight G the speeds vi(t) and their change over time are used as weighting of the simultaneously determined wheel loads Fi(t).
Abstract:
An apparatus for calibrating a weigh-in-motion (WIM) sensor embedded in a roadway includes an actuator, an applicator, a force sensor disposed between the actuator and the applicator, and a carriage supporting the actuator, the applicator and the force sensor, which carriage is selectively movable on a longitudinal support carried by a frame. The apparatus also includes a drive unit to move the applicator along the longitudinal support as well as a position sensor that detects a position of the calibration path relative to the WIM sensor. According to a method for calibrating a WIM sensor, the frame is positioned to straddle the WIM sensor. The applicator introduces along the calibration path at a succession of different positions, a reference force that is measured by the WIM sensor and the force sensor, and these measurements are compared to generate a calibration.
Abstract:
The invention relates to a turning plate for measuring the pushing-off forces of swimmers in a swimming pool when turning and includes force sensors for determining the pushing-off forces and a stiff plate, which can be secured in a stable position parallel to the pool wall. The turning plate has a stiff rectangular frame on which the stiff plate is secured with pre-tensioning by a clamping screw at four locations, in each case over a force sensor. Moreover, next to each of these force sensors, an adjusting pin is arranged on the frame and can be driven out from the frame in order to support the frame on the pool wall. The frame has at least one, preferably two stiff securing brackets for mounting it on the pool edge, preferably on a starting block.
Abstract:
An electronic circuit that changes a charge signal into a voltage signal within a sensor suitable for direct installation in a roadway can be connected to two single-core cables that need not be highly insulating yet can realize the required power supply of the electronics. The circuit includes an integrated impedance converter (IEPE) at the output to a two-core cable and a charge amplifier with an IC1 that has two inputs. A capacitor Cc is connected in series to the signal output of the sensor at one input of the IC1. A Zener diode D is arranged between the ground output of the sensor and the second input of the IC1 and can be supplied with power by a resistor R1 in conjunction with a power supply arranged on the output side in order to adapt the potential at the second input of the IC1.
Abstract:
A method for determining the weight G of a vehicle (1) while the vehicle is travelling on a section (3) of road (4) uses at least one weigh-in-motion (WIM) sensor (5) that is narrower than the length of the footprint of a wheel in the direction of vehicle travel. When the vehicle (1) travels along this section (3) of road (4) both the wheel loads Fi(t) of all the wheels (2) or twin wheels i, and the speed vi(t) of the vehicle (1) during the entire passing are acquired as time functions, and during evaluation of the data for determining the weight G the speeds vi(t) and their change over time are used as weighting of the simultaneously determined wheel loads Fi(t).
Abstract:
An electronic circuit that changes a charge signal into a voltage signal within a sensor suitable for direct installation in a roadway can be connected to two single-core cables that need not be highly insulating yet can realize the required power supply of the electronics. The circuit includes an integrated impedance converter (IEPE) at the output to a two-core cable and a charge amplifier with an IC1 that has two inputs. A capacitor Cc is connected in series to the signal output of the sensor at one input of the IC1. A Zener diode D is arranged between the ground output of the sensor and the second input of the IC1 and can be supplied with power by a resistor R1 in conjunction with a power supply arranged on the output side in order to adapt the potential at the second input of the IC1.
Abstract:
The invention relates to a sensor package (6) with long design for a WIM (Weigh in Motion) sensor (1), comprising a first receiving plate (7), a plurality of measuring elements (10), which are arranged equally spaced in a row (15) on the upper side (9) of the first receiving plate (7), an electrode (11) covering all the measuring elements (10), insulation (12) completely covering the electrode (11), and a second receiving plate (8), which covers the insulation (12). In particular, each receiving plate (7, 8) consists of a plurality of receiving elements (13) the end faces (14) of which are juxtaposed in a row (15). According to the invention, the inner end faces (14) of the receiving elements (13) of at least one row (15) have profiles (16) which engage in a form fit manner with the profiles (16) of the adjacent end faces (14) of neighboring receiving elements (13). The invention further relates to a WIM sensor (1) comprising a hollow profile (3) with a tube (4) and two opposing mountings (5) arranged therein, between which a sensor package (6) according to the invention is arranged under initial tension.
Abstract:
A WIM (weigh-in-motion) sensor has an oblong hollow profile and includes two force-transmission plates arranged parallel to each other. A tube is arranged between the plates and is integrally formed with the plates and defines a hollow space. Two supports that are arranged opposite one another are formed inside the hollow space, each support extending away from a respective plate and between which a measuring element is received centrally in the tube under preload. The tube includes two tube segments designed to be mirror-symmetrical with respect to each other, which join the plates together and on the inside adjoin the hollow space. The wall thickness of each tube segment has a relatively thick region between at least two relatively thin regions.