Abstract:
A contact force testing apparatus includes a measuring sensor that can be contacted with an electrical contact element and measures a contact force (F) of a contact with the electrical contact element of an electrical connector having a male component and a female component. The measuring sensor receives the contact force in a contact region with a piezoelectric pick-up. The measuring sensor includes a plurality of piezoelectric pick-ups that are spaced apart from one another by pick-up gaps. The measuring sensor has a protective sleeve that covers the piezoelectric pick-ups and the pick-up gaps in the contact region.
Abstract:
A micro-electro-mechanical system (MEMS) chip for measuring a pressure in a pressure space includes a MEMS substrate having a measuring region, a contact-making region connected to the measuring region via lines and having contacts, and a bushing region disposed between the measuring region and the contact-making region. The MEMS substrate defines a cavity formed as a blind hole that defines an opening through one side of the MEMS substrate, the bottom of the blind hole forming a membrane. A measuring bridge includes piezoresistive elements disposed on that side of the membrane which faces away from the cavity's opening. A carrier substrate is disposed over the cavity's opening and bonded to the MEMS substrate in a two-dimensional manner to form a rod, with the result that the carrier substrate forms a bottom wall of the cavity spaced apart from the membrane.
Abstract:
An electronic circuit that changes a charge signal into a voltage signal within a sensor suitable for direct installation in a roadway can be connected to two single-core cables that need not be highly insulating yet can realize the required power supply of the electronics. The circuit includes an integrated impedance converter (IEPE) at the output to a two-core cable and a charge amplifier with an IC1 that has two inputs. A capacitor Cc is connected in series to the signal output of the sensor at one input of the IC1. A Zener diode D is arranged between the ground output of the sensor and the second input of the IC1 and can be supplied with power by a resistor R1 in conjunction with a power supply arranged on the output side in order to adapt the potential at the second input of the IC1.
Abstract:
The invention relates to a component transducer (20) for sensing a torque component (Mx, My, Mz); wherein an element (21) made of piezoelectric crystal material comprises element surfaces; wherein a force component (Fx, Fy, Fz) produces electric polarization charges on the element surfaces; and wherein the torque component (Mx, My, Mz) to be sensed consists of at least one pair having force components (+Fx, −Fx; +Fy, −Fy; +Fz, −Fz) wherein said force components (+Fx, −Fx; +Fy, −Fy; +Fz, −Fz) of a pair have the same axis of action and opposite directions of action. The component transducer (20) receives the force components (+Fx, −Fx; +Fy, −Fy; +Fz, −Fz) of a pair separately.
Abstract:
A measurement transducer for simultaneously measuring a force that can be both dynamic and static includes at least one piezoelectric transducer element having element surfaces on which the force generates electrical polarization charges proportional to a magnitude of the force. The measurement transducer includes a resonator element which can be excited to at least one resonance frequency and undergoes a transverse expansion from the action of the force in a transverse direction to the force. The magnitude of the transverse expansion is proportional to the magnitude of the force and causes in the resonance frequency a change that is a function of the force.
Abstract:
A measurement transducer for simultaneously measuring a force that can be both dynamic and static includes at least one piezoelectric transducer element having element surfaces on which the force generates electrical polarization charges proportional to a magnitude of the force. The measurement transducer includes a resonator element which can be excited to at least one resonance frequency and undergoes a transverse expansion from the action of the force in a transverse direction to the force. The magnitude of the transverse expansion is proportional to the magnitude of the force and causes in the resonance frequency a change that is a function of the force.
Abstract:
A contact force testing apparatus includes a measuring sensor that can be contacted with an electrical contact element and measures a contact force (F) of a contact with the electrical contact element. The measuring sensor includes piezoelectric material that receives the contact force (F) in a contact region and produces polarization charges. The measuring sensor includes an acceptor electrode that is completely surrounded by piezoelectric material in the contact region in the direction of a thickness extension of the measuring sensor and receives the polarization charges. A method is provided for the use of such a contact force testing apparatus, and a method is provided for producing such a contact force testing apparatus.
Abstract:
An electronic circuit that changes a charge signal into a voltage signal within a sensor suitable for direct installation in a roadway can be connected to two single-core cables that need not be highly insulating yet can realize the required power supply of the electronics. The circuit includes an integrated impedance converter (IEPE) at the output to a two-core cable and a charge amplifier with an IC1 that has two inputs. A capacitor Cc is connected in series to the signal output of the sensor at one input of the IC1. A Zener diode D is arranged between the ground output of the sensor and the second input of the IC1 and can be supplied with power by a resistor R1 in conjunction with a power supply arranged on the output side in order to adapt the potential at the second input of the IC1.
Abstract:
A measurement transducer for measuring a force includes a resonator element, which can be excited to at least one resonance frequency, and at least one force application element on which the force is applied and which transmits the force to the resonator element. The force application element is a hollow body defining a top surface, a lateral surface and a cavity. The top and lateral surfaces are mechanically connected and enclose the cavity, which contains the resonator element that is mechanically connected to the lateral surface. The lateral surface defines at least one recessed area that extends into the cavity and prevents transmission of the force from the top surface. The lateral surface defines at least one non-recessed area that transmits the force from the top surface.