Abstract:
Disclosed are techniques for efficiently inspecting defects on voltage contrast test structures. Improved test structures for facilitating such techniques are also provided. In one embodiment, the methodologies and test structures allow inspection to occur entirely within a charged particle (e.g., e-beam) system, such as a step and repeat e-beam system. In a specific embodiment, a method of localizing and imaging defects in a semiconductor test structure suitable for voltage contrast inspection is disclosed. A charged particle beam based tool is used to determine whether there are any defects (e.g., open or short defects) present within a voltage contrast test structure. The same charged particle beam based tool is then used to locate defects determined to be present within the voltage contrast test structure. For each localized defect, the same charged particle beam based tool may then be used to generate a high resolution image of the localized defect whereby the high resolution image can later be used to classify the each defect. In one embodiment, the determination as to whether there are any defects present within the voltage contrast test structure is accomplished by inspecting a single area of the voltage contrast test structure that fits within the charged particle beam based tool field of view. In an alternative embodiment, the defect's presence and location are determined without rotating the test structure relative to the charged particle beam.
Abstract:
An improved voltage contrast test structure is disclosed. In general terms, the test structure can be fabricated in a single photolithography step or with a single reticle or mask. The test structure includes substructures which are designed to have a particular voltage potential pattern during a voltage contrast inspection. For example, when an electron beam is scanned across the test structure, an expected pattern of intensities are produced and imaged as a result of the expected voltage potentials of the test structure. However, when there is an unexpected pattern of voltage potentials present during the voltage contrast inspection, this indicates that a defect is present within the test structure. To produce different voltage potentials, a first set of substructures are coupled to a relatively large conductive structure, such as a large conductive pad, so that the first set of substructures charges more slowly than a second set of substructures that are not coupled to the relatively large conductive structure. Mechanisms for fabricating such a test structure are also disclosed. Additionally, searching mechanisms for quickly locating defects within such a test structure, as well as other types of voltage contrast structures, during a voltage contrast inspection are also provided.
Abstract:
An improved voltage contrast test structure is disclosed. In general terms, the test structure can be fabricated in a single photolithography step or with a single reticle or mask. The test structure includes substructures which are designed to have a particular voltage potential pattern during a voltage contrast inspection. For example, when an electron beam is scanned across the test structure, an expected pattern of intensities are produced and imaged as a result of the expected voltage potentials of the test structure. However, when there is an unexpected pattern of voltage potentials present during the voltage contrast inspection, this indicates that a defect is present within the test structure. To produce different voltage potentials, a first set of substructures are coupled to a relatively large conductive structure, such as a large conductive pad, so that the first set of substructures charges more slowly than a second set of substructures that are not coupled to the relatively large conductive structure. Mechanisms for fabricating such a test structure are also disclosed. Additionally, searching mechanisms for quickly locating defects within such a test structure, as well as other types of voltage contrast structures, during a voltage contrast inspection are also provided.