Abstract:
An energy-saving filtering system and a hollow fiber membrane module for the same are disclosed. According to the filtering system of the present invention, pretreated feed water flows into the case of the hollow fiber membrane module by gravity, and the filtrate passing through the hollow fiber membrane is discharged from the hollow fiber membrane module by gravity.
Abstract:
Disclosed are a pressurized-type hollow fiber membrane module having a pressure resistance higher than 3 kgf/cm2 and a filtration system comprising the same. The pressurized-type hollow fiber membrane module comprises: a body case having an open end; a fixing member disposed in the body case at the open end; a hollow fiber membrane potted in the fixing member; and a cap on the open end of the body case, the cap and fixing member forming a filtrate-collecting space, wherein a lumen of the hollow fiber membrane is in fluid communication with the filtrate-collecting space, the fixing member has a step so that an upper side surface of the fixing member is not in contact with an inner surface of the body case, and a portion of the cap is inserted in a groove defined by the step of the fixing member and the inner surface of the body case.
Abstract:
Disclosed are a pressurized-type hollow fiber membrane module having a pressure resistance higher than 3 kgf/cm2 and a filtration system comprising the same. The pressurized-type hollow fiber membrane module comprises: a body case having an open end; a fixing member disposed in the body case at the open end; a hollow fiber membrane potted in the fixing member; and a cap on the open end of the body case, the cap and fixing member forming a filtrate-collecting space, wherein a lumen of the hollow fiber membrane is in fluid communication with the filtrate-collecting space, the fixing member has a step so that an upper side surface of the fixing member is not in contact with an inner surface of the body case, and a portion of the cap is inserted in a groove defined by the step of the fixing member and the inner surface of the body case.
Abstract:
A composite hollow fiber membrane having improved water permeability and peel strength and a manufacturing method thereof are disclosed. The composite hollow fiber membrane includes a tubular polymer membrane having an outer surface and an inner surface, and a tubular braid disposed between the outer surface and the inner surface of the tubular polymer membrane, the tubular braid comprises a plurality of yarns, each of the yarns includes first multifilaments and second multifilaments, each of the first multifilaments includes a plurality of first monofilaments having fineness of 3 to 50 denier, and each of the second multifilaments includes a plurality of second monofilaments having fineness of 0.4 to 3 denier.
Abstract:
Disclosed are an extendable pressurized-type hollow fiber membrane module which facilitates improvement of filtrate quality through a multistep-filtration, enhanced easiness of installation and maintenance, decrease of footprint, and/or enlargement of filtration apparatus (without causing decrease of permeate flux of a unit hollow fiber membrane), and a filtration apparatus manufactured using the same. The filtration apparatus of the present invention comprises first and second pressurized-type hollow fiber membrane modules, wherein an inlet port of the first pressurized-type hollow fiber membrane module for introducing feed water and an outlet port of the second pressurized-type hollow fiber membrane module for discharging filtrate or air are coupled to each other.