Abstract:
A mirror unit, a distance measurement device and a laser radar, and a mobile body and a fixed object having the mirror unit and the distance measurement device or the laser radar. The mirror unit includes a plurality of pairs of first reflecting surfaces and second reflecting surfaces inclined relative to a rotation axis, and extending in directions crossing each other. The mirror unit rotates about the rotation axis. In the mirror unit, a beam emitted from a light source is reflected on a first reflecting surface, and then reflected on a second reflecting surface paired with the first reflecting surface. The beam is scanned over an object with the rotation of the mirror unit. In the mirror unit, the first and second reflecting surfaces are formed, respectively, on first and second reflecting members which are combined to select an emission angle of a beam emitted from the mirror unit.
Abstract:
An optical unit contains an optical element made of resin obtained by integrally forming a reflector in which a reflecting surface which reflects a light flux is formed on an outer peripheral side surface, and a flange extending in a direction orthogonal to the reflector to support the reflector; a rotary driving body which rotates the optical element; and a connecting device which connects the flange of the optical element to the rotary driving body, the optical element being capable of rotating around a rotational axis of the rotary driving body.
Abstract:
The optical element is a long optical element obtained by detaching a long main body part connected to a runner part via a gate part including an optical part from the gate part and chipping the detached main body, the optical part including at least a first optical surface to allow light to pass there through or to reflect light. The first optical surface has a curved surface that is curved on the short direction at least at the longitudinal end, while the first edge of the first optical surface side on the end surface of gate part side in the main body part is curved according to the curved surface example of the first optical surface. The boundary surface between the main body part and the gate part is formed so as to be narrower than the end surface of the gate part side of the main body part. At least the distance between the site corresponding to the effective region on the first optical surface at the first edge and the site corresponding to the effective region on the first optical surface at the second edge of the first optical surface side on the boundary surface is uniformly formed.