Abstract:
A 3D scanning system includes a base stand, two circular arc shaped support tracks, a mounting assembly for mounting the support tracks to the base stand with one or more degrees of rotational freedom, two sensor holders mounted on the respective support track for holding two depth sensors, and a drive mechanism for driving the sensor holders to move along the respective support tracks. The mounting assembly supports relative rotation of the two support tracks and pitch and roll rotations of the support tracks. To perform a 3D scan, a stationary object is placed in front of the two depth sensors. The sensor holders are moved along the respective support tracks to different positions to obtain depth images of the objects from different angles, from which a 3D surface of the object is constructed. Prior to scanning, the two depth sensors are calibrated relative to each other.
Abstract:
An artificial neural network system implemented on a computer for cell segmentation and classification of biological images. It includes a deep convolutional neural network as a feature extraction network, a first branch network connected to the feature extraction network to perform cell segmentation, and a second branch network connected to the feature extraction network to perform cell classification using the cell segmentation map generated by the first branch network. The feature extraction network is a modified VGG network where each convolutional layer uses multiple kernels of different sizes. The second branch network takes feature maps from two levels of the feature extraction network, and has multiple fully connected layers to independently process multiple cropped patches of the feature maps, the cropped patches being located at a centered and multiple shifted positions relative to the cell being classified; a voting method is used to determine the final cell classification.
Abstract:
A method, computer readable medium, and system are disclosed of enhancing cell images for analysis. The method includes performing a multi-thresholding process on a cell image to generate a plurality of images of the cell image; smoothing each component within each of the plurality of images; merging the smoothed components into a merger layer; classifying each of the components of the merged layer into convex cell regions and concave cell regions; combining the concave cell regions with a cell boundary for each of the corresponding concave cell regions to generate a smoothed shape profile for each of the concave cell regions; and generating an output image by combining the convex cell regions with the concave cell regions with smoothed shape profiles.
Abstract:
A method, computer readable storage medium, and system are disclosed for improving communication productivity, comprising: capturing at least one three-dimensional (3D) stream of data on two or more subjects; extracting a time-series of skeletal data from the at least one 3D stream of data on the two or more subjects; and determining an engagement index between the two or more subjects by comparing the time-series of skeletal data on each of the two or more subjects over a time window.
Abstract:
A method for recognizing abnormal behavior is disclosed, the method includes: capturing at least one video stream of data on one or more subjects; extracting body skeleton data from the at least one video stream of data; classifying the extracted body skeleton data as normal behavior or abnormal behavior; and generating an alert, if the extracted skeleton data is classified as abnormal behavior.
Abstract:
In a text line segmentation process, connected components (CCs) in document image are categorized into three subsets (normal, large, small) based on their sizes. The centroids of the normal size CCs are used to perform line detection using Hough transform. Among the detected candidate lines, those with line bounding box heights greater than a certain height are removed. For each normal size CC, if its bounding box does not overlap the bounting box of any line with an overlap area greater than a predefined fraction of the CC bounding box, a new line is added for this CC, which passes through the centroid of the CC and has an average slant angle. Each large size CCs are broken into two or more CCs. All CCs are then assigned to the nearest lines. A refinement method is also described, which can take any text line segmentation result and refine it.
Abstract:
An artificial neural network system implemented on a computer for cell segmentation and classification of biological images. It includes a deep convolutional neural network as a feature extraction network, a first branch network connected to the feature extraction network to perform cell segmentation, and a second branch network connected to the feature extraction network to perform cell classification using the cell segmentation map generated by the first branch network. The feature extraction network is a modified VGG network where each convolutional layer uses multiple kernels of different sizes. The second branch network takes feature maps from two levels of the feature extraction network, and has multiple fully connected layers to independently process multiple cropped patches of the feature maps, the cropped patches being located at a centered and multiple shifted positions relative to the cell being classified; a voting method is used to determine the final cell classification.
Abstract:
A method, computer readable storage medium, and system are disclosed for improving communication productivity in a conference between two or more subjects, wherein at least one of the two or more subjects participates in the conference from a first location and one or more of the two or more subjects participate in the meeting from a second location. The method includes capturing, at least one first three-dimensional (3D) stream of data and at least one second three-dimensional (3D) stream of data on each of the two or more subjects participating in the conference; generating a synchrony score for the two or more subjects, wherein the synchrony score is calculated by comparing time series of skeletal data of each of the two or more subjects to one another for a defined period of time; and using the synchrony score to generate an engagement index between the two or more subjects.
Abstract:
A method and system for recognizing behavior is disclosed, the method includes: capturing at least one video stream of data on one or more subjects; extracting body skeleton data from the at least one video stream of data; computing feature extractions on the extracted body skeleton data to generate a plurality of 3 dimensional delta units for each frame of the extracted body skeleton data; generating a plurality of histogram sequences for each frame by projecting the plurality of 3 dimensional delta units for each frame to a spherical coordinate system having a plurality of spherical bins; generating an energy map for each of the plurality of histogram sequences by mapping the plurality of spherical bins versus time; applying a Histogram of Oriented Gradients (HOG) algorithm on the plurality of energy maps to generate a single column vector; and classifying the single column vector as a behavior and/or emotion.
Abstract:
A method, system and non-transitory computer readable medium for recognizing gestures are disclosed, the method includes capturing at least one three-dimensional (3D) video stream of data on a subject; extracting a time-series of skeletal data from the at least one 3D video stream of data; isolating a plurality of points of abrupt content change called temporal cuts, the plurality of temporal cuts defining a set of non-overlapping adjacent segments partitioning the time-series of skeletal data; identifying among the plurality of temporal cuts, temporal cuts of the time-series of skeletal data having a positive acceleration; and classifying each of the one or more pair of consecutive cuts with the positive acceleration as a gesture boundary.