Abstract:
A medical system (28) for normalization correction of an imaging system (10) includes a detector geometry correction unit (44), a crystal efficiency unit (46), and a normalization unit (54). The detector geometry correction unit (44) mathematically calculates a detector geometry correction component for a type of scanner (12) of interest. The crystal efficiency unit (46) configured to empirically determine a crystal efficiency component for at least one individual scanner (12). The normalization unit (54) generates a normalization data set (56) which corresponds to a normalization correction factor of the at least one individual scanner (12) in accordance with the detector geometry correction component and the crystal efficiency component.
Abstract:
In an emission imaging method, emission imaging data are acquired for a subject using an emission imaging scanner (10) including radiation detectors (12). The emission imaging data are reconstructed to generate a reconstructed image by executing a constrained optimization program including a measure of data fidelity between the acquired emission imaging data an a reconstruct-image transformed by a data model of the imaging scanner to emission imaging data. During the reconstructing, each iteration of the constrained optimization program is constrained by an image variability constraint. The reconstructed image is displayed the reconstructed image on a display device. The emission imaging may be positron emission tomography (PET) imaging data, optionally acquired using a sparse detector array. The image variability constraint may be a constraint that an image total variation (image TV) of a latent image defined using a Gaussian blurring matrix be less than a maximum value.
Abstract:
A method includes identifying an imaging workflow process and constructing and displaying, in a graphical user interface, a graphical process tree for the imaging workflow process and a plurality of steps thereof. The method further includes identifying a standard of interest and mapping the plurality of steps into the standard of interest in the displayed graphical process tree. The method further includes receiving, via the graphical user interface, an input indicating a potential failure mode information for two or more of the steps, calculating at least one risk priority number for each step, evaluating the numeric assessment of risk based on a risk priority number threshold, and visually highlighting displayed steps corresponding to steps with risk priority numbers that exceed the risk priority number threshold. The method further includes determining a risk management plan to mitigate risk based on the highlighted steps.