MAGNETIC RESONANCE COIL ARRAY AND SELF-COMPENSATED RADIOFREQUENCY CHOKE

    公开(公告)号:US20230258749A1

    公开(公告)日:2023-08-17

    申请号:US18009366

    申请日:2021-06-18

    CPC classification number: G01R33/3685

    Abstract: The invention relates to a magnetic resonance coil array (30) of a magnetic resonance system having a distributed cable routing realized by a self-compensated radiofrequency choke (10). The magnetic resonance coil array (30) comprises multiple magnetic resonance receive coils (32), an input-output unit (34), and multiple coaxial cables (14) interconnecting the magnetic resonance receive coils (32) with the input-output unit (34). The coaxial cable (14) comprises the self-compensated radiofrequency choke (10). The self-compensated radiofrequency choke (10) allows to replace conventional bulky resonant radiofrequency traps used in conventional magnetic resonance coil arrays and allows implementing the distributed cable routing. The self-compensated radiofrequency choke (10) comprises a choke housing (12) having a toroidal form and the coaxial cable (14), wherein the coaxial cable (14) is wound around the choke housing (12) in a self-compensated winding pattern. The self-compensated winding pattern provides compensation for a B1-excitation field of a magnetic resonance system and eliminates the need for the self-compensated radiofrequency choke (10) to be resonant to the B1-excitation field.

    Passive RF shim resonator FR field homogenization of an RF antenna device for TX mode and RX mode

    公开(公告)号:US11047940B2

    公开(公告)日:2021-06-29

    申请号:US16629587

    申请日:2018-07-12

    Abstract: The present invention provides a passive radio frequency (RF) shim resonator (144) for field homogenization of an RF field emitted by an RF antenna device (140) of a magnetic resonance (MR) imaging system (110), whereby the passive RF shim resonator (144) has a first resonating capability and a second resonating capability, and the passive RF shim resonator (144) comprises a switching device, whereby the switching device is adapted to switch between the first and the second resonating capability in accordance with a TX-mode and a RX-mode of the RF field emitted by the RF antenna device (140) of the MR imaging system (110). The present invention further provides a patient bed (142) or a patient mattress for use in a magnetic resonance imaging (MRI) system (110), whereby the patient bed (142) or the patient mattress comprises an above passive RF shim resonator (144). The present invention further provides a RF antenna device for generating and/or receiving a RF field for use in a MRI system (110), whereby the RF antenna device (140) comprises a coil housing and an above passive RF shim resonator (144), wherein the passive RF shim resonator (144) is located within the coil housing. The present invention also provides a magnetic resonance (MR) imaging system (110), comprising an above patient bed (142) or patient mattress or at least one above RF antenna device (140).

    Indication of a loading state of a flexible coil element

    公开(公告)号:US12140650B2

    公开(公告)日:2024-11-12

    申请号:US17913455

    申请日:2021-03-24

    Abstract: The invention also refers to a flexible coil element for a flexible coil array, for a magnetic resonance imaging apparatus. The invention also refers to a flexible coil array, for a magnetic resonance imaging apparatus, for indicating a loading state of a flexible coil element being positioned on at least one inductive element. The invention also refers to a method for indicating a loading state of a flexible coil element being positioned on at least one inductive element. The flexible coil element is comprised by a flexible coil array, wherein the flexible coil array comprises at least one flexible coil element. Furthermore, the invention refers to a software package comprising instructions for carrying out the method steps.

    CABLE HARNESS WITH MULTIPLE RF CHOKES AND MAGNETIC RESONANCE SYSTEM

    公开(公告)号:US20240302464A1

    公开(公告)日:2024-09-12

    申请号:US18276306

    申请日:2022-02-23

    CPC classification number: G01R33/3685

    Abstract: According to the invention, a cable harness (7) for a magnetic resonance system is provided, wherein the cable harness (7) is adapted for being connected to a feeding point of a magnetic resonance radiofrequency coil device (1) on one end and for being connected to an input-output unit (6) for connecting the magnetic resonance radiofrequency coil device (1) with a control and analysis unit of the magnetic resonance system on the other end, wherein the cable harness (7) comprises at least one transmission line (8) for connecting the feeding point with the input-output unit (6) and multiple radiofrequency chokes (10) which are arranged within the cable harness (7). In this way, a bulky resonant RF traps can be avoided while still the B1-excitation field of the MR system can be compensated for and coupling to local nearby coils can be reduced.

    RADIO FREQUENCY RECEIVER WITH DETECTION OF A MALFUNCTION OF A DETUNE CIRCUIT

    公开(公告)号:US20230408608A1

    公开(公告)日:2023-12-21

    申请号:US18035963

    申请日:2021-11-12

    CPC classification number: G01R33/3628 G01R33/288

    Abstract: For a radio frequency (RF) receiver system a solution for a safe operation of the radio frequency (RF) receiver system in magnetic resonance imaging shall be ensured. This is achieved by a radio frequency (RF) receiver system for use in a magnetic resonance (MR) imaging system the RF receiver system, wherein the RF receiver system comprises at least one RF receive coil with at least one detune circuit (1). The detune circuit (1) comprises at least a pair of crossed diodes (D1, D2) with an interface, wherein the interface is configured to measure an electrical current in the detune circuit (1) to determine the proper function of the PIN diodes (D1, D2) by measuring the detune direct current for a first detune voltage polarity and for a second reversed detune voltage polarity. The present invention also provides a magnetic resonance (MR) imaging system, a method for ensuring a safe radio frequency (RF) receiver system operation in magnetic resonance imaging, a software package for a magnetic resonance (MR) imaging system, a software package for upgrading a magnetic resonance (MR) imaging system and a computer program product.

    Spatially resolved metal detector

    公开(公告)号:US10788548B2

    公开(公告)日:2020-09-29

    申请号:US15518533

    申请日:2015-10-02

    Abstract: The invention provides for a metal detector (100, 300) with at least a first coil (102) for generating a first magnetic field (108) along a first direction (119). The first coil is a split coil with a first (104) and a second (106) portion (104). A coil power supply (110) separately supplying time varying electrical power to the coil portions. At least one electrical sensor (116, 118) measures electrical data (136) descriptive of the electrical power supplied to at least the first coil portion and the second coil portion. The coils are controlled such as to move a field-free region in a predetermined pattern within a measurement zone. If metal is detected, the pattern is modified for refining localisation of the metallic object.

    Magnetic resonance imaging RF antenna

    公开(公告)号:US10274555B2

    公开(公告)日:2019-04-30

    申请号:US15127859

    申请日:2015-02-27

    Abstract: An RF antenna system (100, 1014, 1014′) transmits RF excitation signals into and/or receives MR signals from an MR imaging system's (1000, 1100, 1200) imaging volume (1015). The magnetic resonance imaging antenna includes a coil former (100, 1014, 1014′) adjacent to the imaging volume (1015); and a resonator (400, 500, 600) attached to the coil former and tuned to at least one resonant frequency formed from electrical connections (304), between multiple capacitors (302). The multiple capacitors are distributed in a periodic pattern (300, 700, 800, 900) about and along the coil former.

Patent Agency Ranking