X-ray calibration for display overlays onto X-ray images

    公开(公告)号:US11931198B2

    公开(公告)日:2024-03-19

    申请号:US17378975

    申请日:2021-07-19

    CPC classification number: A61B6/584 A61B6/4441 A61B6/463 A61B6/5205 A61B6/54

    Abstract: Various embodiments of an X-ray imaging system employ a C-arm (60) and an X-ray overlay controller (410). In a planning overlay display mode, the controller (410) processes a planning X-ray image (420) and a reference planning X-ray image (421), both illustrative of the planning X-ray calibration device (400) and further processes a base X-ray image (424, 425) (422) illustrative of a base X-ray calibration device to control a display of a planned tool trajectory overlay (412) and a tracked tool position overlay (413) onto the planning X-ray image (420). In a guiding overlay display mode, the controller (410) processes a pair of interventional X-ray images (424, 425) and a guiding X-ray image (426), all illustrative of a guiding X-ray calibration device (402), to control a display of a guidance tool trajectory overlay (414) and a racked tool position overlay (415) onto the guiding X-ray image (426).

    Navigation support
    2.
    发明授权

    公开(公告)号:US12251172B2

    公开(公告)日:2025-03-18

    申请号:US18270533

    申请日:2021-12-28

    Abstract: The present invention relates to guidance during a medical intervention. In order to provide an improved navigation support with a facilitated setup, a system (10) for navigation support is provided. An image data input (12) receives a plurality of acquired 2D X-ray images of a subject's body from different angles. A set of markers, which are visible in X-ray images and which are detectable by a navigation system, is assigned to the subject. A marker detecting arrangement (16) is provided that detects a current spatial location of the markers assigned to the subject. A data processor (14) reconstructs a 3D volume of the subject based on the plurality of 2D X-ray images. At least a part of the markers is arranged outside the volume covered by the reconstructed 3D volume of the subject, while the markers are visible in the 2D X-ray images. The data processor (14) identifies the markers in the 2D X-ray images based on image data of the plurality of 2D X-ray images outside the 3D volume and determines a spatial location of the markers in relation to the 3D volume of the subject. The data processor (14) also registers the reconstructed 3D volume of the subject to a current spatial position of the subject based on the detected current spatial location of the markers and the determined spatial location of the markers in relation to the 3D volume of the subject. An output interface (18) provides the registered reconstructed 3D volume for navigation.

Patent Agency Ranking