AUTOMATIC ARTIFACT DETECTION AND PULSE SEQUENCE MODIFICATION IN MAGNETIC RESONANCE IMAGING

    公开(公告)号:US20210156940A1

    公开(公告)日:2021-05-27

    申请号:US17047749

    申请日:2019-04-17

    摘要: The invention provides for a magnetic resonance imaging system (100, 300). The execution of machine executable instructions causes a processor (130) controlling the magnetic resonance imaging system to control (200) the magnetic resonance imaging system to acquire the magnetic resonance imaging data (144) using pulse sequence commands (142) and reconstruct (202) a magnetic resonance image (148). Execution of the machine executable instructions causes the processor to receive (204) a list of suggested pulse sequence command changes (152) by inputting the magnetic resonance image and image metadata (150) into an MRI artifact detection module (146, 146′, 146″). The MRI artifact detection module comprises at least one neural network, which has been trained using images from failed magnetic resonance imaging protocols and/or magnetic resonance data extracted from the magnetic resonance imaging protocols labeled as failed accessed from a log file (312) which logs the execution of previous magnetic resonance imaging protocols. Execution of the machine executable instructions further causes the processor to receive (206) a selection of a chosen pulse sequence command change (158) from the list of suggested pulse sequence command changes. Execution of the machine executable instructions further causes the processor to modify (208) the pulse sequence commands using the chosen pulse sequence command change.

    Deep learning based processing of motion artifacts in magnetic resonance imaging data

    公开(公告)号:US11320508B2

    公开(公告)日:2022-05-03

    申请号:US16759778

    申请日:2018-10-22

    摘要: The invention relates to a magnetic resonance imaging data processing system (126) for processing motion artifacts in magnetic resonance imaging data sets using a deep learning network (146, 502, 702) trained for the processing of motion artifacts in magnetic resonance imaging data sets. The magnetic resonance imaging data processing system (126) comprises a memory (134, 136) storing machine executable instructions (161, 164) and the trained deep learning network (146, 502, 702). Furthermore, the magnetic resonance imaging data processing system (126) comprises a processor (130) for controlling the magnetic resonance imaging data processing system. Execution of the machine executable instructions (161, 164) causes the processor (130) to control the magnetic resonance imaging data processing system (126) to: receive a magnetic resonance imaging data set (144, 500, 800), apply the received magnetic resonance imaging data set (144, 500, 800) as an input to the trained deep learning network (146, 502, 702), process one or more motion artifacts present in the received magnetic resonance imaging data set (144, 500, 800) using the trained deep learning network (146, 502, 702).

    Combined arterial spin labeling and magnetic resonance fingerprinting

    公开(公告)号:US11226389B2

    公开(公告)日:2022-01-18

    申请号:US16339858

    申请日:2017-10-09

    摘要: The invention provides for a method of operating a magnetic resonance imaging system for imaging a subject. The method comprises acquiring (700) tagged magnetic resonance data (642) and a first portion (644) of fingerprinting magnetic resonance data by controlling the magnetic resonance imaging system with tagging pulse sequence commands (100). The tagging pulse sequence commands comprise a tagging inversion pulse portion (102) for spin labeling a tagging location within the subject. The tagging pulse sequence commands comprise a background suppression portion (104). The background suppression portion comprises MRF pulse sequence commands for acquiring fingerprinting magnetic resonance data according to a magnetic resonance fingerprinting protocol. The tagging pulse sequence commands comprise an image acquisition portion (106). The method comprises acquiring (702) control magnetic resonance data (646) and a second portion (648) of the fingerprinting magnetic resonance data by controlling the magnetic resonance imaging system with control pulse sequence commands. The control pulse sequence commands comprise a control inversion pulse portion (202). The control pulse sequence commands comprise the background suppression portion (104′). The control pulse sequence commands comprise the image acquisition portion (106). The method comprises reconstructing (704) tagged magnitude images (650) using the tagged magnetic resonance data. The method comprises reconstructing (706) a control magnitude images (652) using the control magnetic resonance data. The method comprises constructing (708) an ASL image by subtracting the control magnitude images and the tagged magnitude images from each other. The method comprises reconstructing (710) a series of magnetic resonance fingerprinting images (656) using the first portion of the fingerprinting magnetic resonance data and/or the second portion of the fingerprinting magnetic resonance data. The method comprises generating (712) at least one magnetic resonance parametric map (658) by comparing the series of magnetic resonance fingerprinting images with a magnetic resonance fingerprinting dictionary.

    Multi-state magnetic resonance fingerprinting

    公开(公告)号:US11579230B2

    公开(公告)日:2023-02-14

    申请号:US16468849

    申请日:2017-12-06

    摘要: The invention provides for a magnetic resonance imaging system (100) for acquiring magnetic resonance data (142) from a subject (118) within a measurement zone (108). The magnetic resonance imaging system (100) comprises: a processor (130) for controlling the magnetic resonance imaging system (100) and a memory (136) storing machine executable instructions (150, 152, 154), pulse sequence commands (140) and a dictionary (144). The pulse sequence commands (140) are configured for controlling the magnetic resonance imaging system (100) to acquire the magnetic resonance data (142) of multiple steady state free precession (SSFP) states per repetition time. The pulse sequence commands (140) are further configured for controlling the magnetic resonance imaging system (100) to acquire the magnetic resonance data (142) of the multiple steady state free precession (SSFP) states according to a magnetic resonance fingerprinting protocol. The dictionary (144) comprises a plurality of tissue parameter sets. Each tissue parameter set is assigned with signal evolution data pre-calculated for multiple SSFP states.

    Image quality control in dynamic contrast enhanced magnetic resonance imaging

    公开(公告)号:US10935617B2

    公开(公告)日:2021-03-02

    申请号:US16463922

    申请日:2017-11-23

    摘要: The invention provides for a magnetic resonance imaging system (100) comprising a memory (134) for storing machine executable instructions (140) and pulse sequence commands (142). The pulse sequence commands are configured for controlling the magnetic resonance imaging system according to a DCE Magnetic Resonance Imaging protocol. The magnetic resonance imaging system further comprises a user interface (200) and a processor (130) for controlling the magnetic resonance imaging system. Execution of the machine executable instructions causes the processor to: control (500) the magnetic resonance imaging system using the pulse sequence commands to acquire calibration magnetic resonance data (144) two or more times for varying flip angles; reconstruct (502) each acquisition of the calibration magnetic resonance data into a calibration image (146) to create a set of variable flip angle images (148); calculate (504) a T1 mapping (150) using the set of variable flip angle images; calculate (506) a contrast agent calibration (152) for a predetermined magnetic resonance imaging contrast agent using at least partially the T1 mapping; calculate (508) an estimated calibration error (154) that is descriptive of an estimated error in the contrast agent calibration and/or the T1 mapping using a calibration accuracy model, wherein the calibration accuracy model is configured for calculating the estimated calibration error using the set of variable flip angle images; and display (510) a calibration warning message (202) on the user interface if the estimated calibration error is outside of a predetermined calibration error range.

    Motion artifact prediction during data acquisition

    公开(公告)号:US11633123B2

    公开(公告)日:2023-04-25

    申请号:US16759755

    申请日:2018-10-26

    IPC分类号: A61B5/055 G16H30/40 A61B5/00

    摘要: A magnetic resonance imaging system including a memory configured to store machine executable instructions, pulse sequence commands, and a first machine learning model including a first deep learning network. The pulse sequence commands are configured for controlling the magnetic resonance imaging system to acquire a set of magnetic resonance imaging data. The first machine learning model includes a first input and a first output, a processor, wherein execution of the machine executable instructions causes the processor to control the magnetic resonance imaging system to repeatedly perform an acquisition and analysis process including: acquiring a dataset including a subset of the set of magnetic resonance imaging data from an imaging zone of the magnetic resonance imaging system according to the pulse sequence commands, providing the dataset to the first input of the first machine learning model, in response to the providing, receiving a prediction of a motion artifact level of the acquired magnetic resonance imaging data from the first output of the first machine learning model, the motion artifact level characterizing a number and/or extent of motion artifacts present in the acquired magnetic resonance imaging data.

    Automated detection of abnormal subject configuration for medical imaging

    公开(公告)号:US11250590B2

    公开(公告)日:2022-02-15

    申请号:US17263985

    申请日:2019-12-12

    IPC分类号: G06T7/73 A61B5/00 A61B5/055

    摘要: The invention provides for a medical instrument (100, 400) comprising a medical imaging system (102, 402) configured for acquiring medical imaging data (432) from a subject (108); a subject support (110) configured for supporting the subject during acquisition of the medical imaging data; and an optical imaging system (114, 114′) configured for acquiring optical imaging data (134) of the subject on the subject support. The execution of the machine executable instructions causes a processor (122) controlling the medical instrument to: control (200) the optical imaging system to acquire the optical imaging data; generate (202) the initial vector (136) using the optical imaging data; generate (204) the synthetic image by inputting the initial vector into a generator neural network; calculate (206) a difference (140) between the synthetic image and the optical imaging data; and provide (208) a warning signal (142) if the difference differs by a predetermined threshold. The generator neural network is trained to generate a synthetic image (138) of the subject on the subject support in response to inputting an initial vector.

    Sub voxel resolution magnetic resonance fingerprinting imaging

    公开(公告)号:US11092659B2

    公开(公告)日:2021-08-17

    申请号:US16498555

    申请日:2018-03-30

    摘要: A magnetic resonance imaging (MRI) system (100) includes a memory (134) for storing machine executable instructions (140) and magnetic resonance fingerprinting (MRF) pulse sequence commands (142) which cause the MRI system to acquire MRF magnetic resonance data (144) according to an MRF protocol. The pulse sequence commands are configured for acquiring the MRF magnetic resonance data in two-dimensional slices (410, 412, 414, 416, 418, 420), having a slice selection direction. A train of pulse sequence repetitions includes a sampling event where the MRF data is repeatedly sampled. Execution of the machine executable instructions causes a processor to control the MRI system to: acquire (200) the MRF magnetic resonance data; construct (202) a series (148) of at least one magnetic resonance parameter value for each voxel of the two dimensional slices; and calculate (204) a composition (502, 504, 506, 508) of each of a set of predetermined substances within two or more sub-voxels (306, 308) for each voxel of the two dimensional slices using a sub-voxel magnetic resonance fingerprinting dictionary (150) for each of the two or more sub-voxels and the series of the at least one magnetic resonance parameter value. Each voxel in the slice selection direction is divided into two or more sub-voxels.

    Steady state magnetic resonance fingerprinting

    公开(公告)号:US10788556B2

    公开(公告)日:2020-09-29

    申请号:US16072940

    申请日:2017-02-06

    摘要: A magnetic resonance imaging system (100) acquires magnetic resonance data (142) from a subject (118) within a measurement zone (108). Pulse sequence commands (140) control the magnetic resonance imaging system to acquire the magnetic resonance data according to a magnetic resonance fingerprinting protocol. The pulse sequence commands are configured for controlling the magnetic resonance imaging system to repeatedly generate an RF pulse train (300) and acquire the magnetic resonance data as multiple k-space traces. The machine executable instructions causes the processor to: sequentially acquire (200) the multiple k-space traces of magnetic resonance data by controlling the magnetic resonance imaging system with pulse sequence commands and calculate (202) the abundance of each of a set of predetermined substances for k-space traces that are acquired after a predetermined number of k-space traces of the multiple k-space traces has been acquired and the acquired magnetization has reached a steady state. The abundance of each of a set of predetermined substances is determined by comparing the magnetic resonance data with a steady state magnetic resonance fingerprinting dictionary (144) which contains a listing of calculated magnetic resonance signals in response to the RF pulse train for a set of predetermined substances.