Abstract:
Disclosed herein is a low-cost digital predistortion apparatus using envelope detection feedback. The low-cost digital predistortion apparatus includes a digital predistortion unit and an envelope detection feedback unit. The digital predistortion unit converts the output of a predistorter into analog signals, frequency-modulates the analog signals into a pass band signal, and amplifies the frequency-modulated signal via a power amplifier. The envelope detection feedback unit converts the difference between the input and output of the power amplifier of the digital predistortion unit and the output of the power amplifier into baseband signals, respectively, converts the baseband signals into digital signals, estimates the nonlinear distortion characteristic output of the power amplifier, calculates a predistortion parameter that is used to compensate for the estimated nonlinear distortion characteristic output of the power amplifier.
Abstract:
Disclosed herein is a low-cost digital predistortion apparatus using envelope detection feedback. The low-cost digital predistortion apparatus includes a digital predistortion unit and an envelope detection feedback unit. The digital predistortion unit converts the output of a predistorter into analog signals, frequency-modulates the analog signals into a pass band signal, and amplifies the frequency-modulated signal via a power amplifier. The envelope detection feedback unit converts the difference between the input and output of the power amplifier of the digital predistortion unit and the output of the power amplifier into baseband signals, respectively, converts the baseband signals into digital signals, estimates the nonlinear distortion characteristic output of the power amplifier, calculates a predistortion parameter that is used to compensate for the estimated nonlinear distortion characteristic output of the power amplifier.