Abstract:
Provided is a joint pattern beam sectorization method and apparatuses for performing the same, wherein the joint pattern beam sectorization method including generating, in a service target region, a pattern sector corresponding to an antenna array including antennas having an identical radiation pattern by using the antenna array and generating pattern beam sectors in the pattern sector through a beamforming using the antennas.
Abstract:
A high-frequency signal predistortion device includes a high-frequency signal estimator, a predistortion estimator, and a predistorter. The high-frequency signal estimator is configured to determine non-linear distortion characteristics of high-frequency signals transmitted by antennas. The predistortion estimator is coupled to the high-frequency signal estimator. The predistortion estimator is configured to determine a predistortion coefficient based on the non-linear distortion characteristics. The predistorter is coupled to the predistortion estimator. The predistorter is configured to distort a base signal of the high-frequency signals based on the predistortion coefficient.
Abstract:
Disclosed herein is a low-cost digital predistortion apparatus using envelope detection feedback. The low-cost digital predistortion apparatus includes a digital predistortion unit and an envelope detection feedback unit. The digital predistortion unit converts the output of a predistorter into analog signals, frequency-modulates the analog signals into a pass band signal, and amplifies the frequency-modulated signal via a power amplifier. The envelope detection feedback unit converts the difference between the input and output of the power amplifier of the digital predistortion unit and the output of the power amplifier into baseband signals, respectively, converts the baseband signals into digital signals, estimates the nonlinear distortion characteristic output of the power amplifier, calculates a predistortion parameter that is used to compensate for the estimated nonlinear distortion characteristic output of the power amplifier.
Abstract:
A massive antenna-based pattern/polarization beam division multiple access method and an apparatus performing the same are provided. The massive antenna-based pattern/polarization beam division multiple access method includes generating a plurality of beam sectors for each antenna array by using a plurality of pattern/polarization antenna arrays and performing MIMO transmission in each of the plurality of beam sectors, wherein the plurality of pattern/polarization antenna arrays each have a different radiation pattern.
Abstract:
An apparatus includes a first predistorter configured to calculate a first predistortion parameter and configured to distort an input signal using the first predistortion parameter to output a first distortion signal, a second predistorter configured to calculate a second predistortion parameter and configured to distort the first distortion signal using the second predistortion parameter to output a second distortion signal, a power supply configured to receive the first distortion signal to generate a first envelope signal, and configured to limit a bandwidth of the first envelope signal to obtain a second envelope signal to supply a source voltage, and a power amplifier configured to receive the source voltage and to output an output signal obtained by amplifying the second distortion signal.
Abstract:
A method and apparatus for operating an analog beam is provided. The apparatus includes a hybrid beam-forming structure having a small number of digital chains provided in a digital stage and a signal is transmitted and received in a Time Division Multiple Access (TDMA) scheme. The apparatus includes an analog beam-forming operating unit configured to change the analog beam for a counterpart device for which use of a next frame is to be permitted, upon receiving a request for using the next frame from at least one of multiple devices that transmit and receive signals in units of frames and a communication unit configured to transmit information indicating that the analog beam is changed to permit the use of the next frame by the counterpart device to the multiple devices.
Abstract:
A massive antenna-based pattern/polarization beam division multiple access method and an apparatus performing the same are provided. The massive antenna-based pattern/polarization beam division multiple access method includes generating a plurality of beam sectors for each antenna array by using a plurality of pattern/polarization antenna arrays and performing MIMO transmission in each of the plurality of beam sectors, wherein the plurality of pattern/polarization antenna arrays each have a different radiation pattern.
Abstract:
Provided is a joint pattern beam sectorization method and apparatuses for performing the same, wherein the joint pattern beam sectorization method including generating, in a service target region, a pattern sector corresponding to an antenna array including antennas having an identical radiation pattern by using the antenna array and generating pattern beam sectors in the pattern sector through a beamforming using the antennas.