Abstract:
A heat transferring device including a heater, a cooler, and a recoverer may be provided. The heater may be configured to heat a first liquid working fluid and change the first liquid working fluid to a gaseous working fluid. The cooler may be configured to cool the gaseous working fluid supplied from the heater and change the gaseous working fluid supplied from the heater to a second liquid working fluid. The recoverer may be configured to enable the second liquid working fluid from the cooler to move to the heater. Accordingly, the second liquid working fluid of the cooler may be movable in an upward direction and then recoverable using gravity, without a separate power source.
Abstract:
Provided are a reactor and an operating method for the reactor, and more particularly, a reactor which may passively cool excessively generated heat without an operation of an operator at the time of abnormality of the reactor, completely passively perform the cooling operation for safety procedures by a structure of the reactor and a change in environmental conditions such as a pressure, etc., without a separate control command, and have a simpler structure than the existing reactor safety system, and an operating method for the reactor.
Abstract:
A passive cooling system for a nuclear reactor includes an energy release space in which a reactor vessel is accommodated, an energy absorbing space separated from the energy release space, and an energy transfer space above the energy absorbing space and configured to absorb and cool heat transferred from the reactor vessel and discharge the absorbed heat to an outside of the system through an outer wall thereof. The passive cooling system further includes a first cooling flow path configured to transfer the heat in the reactor vessel to the energy transfer space, a pressure balance pipe configured to transfer the pressure in the energy release space to the energy absorbing space therethrough, and a coolant spray pipe configured to transfer the cooling water in the energy absorbing space pressurized by the pressure balance pipe to the energy transfer space may be provided.
Abstract:
Provided are a nuclear reactor and an operating method for the reactor. The reactor includes a driving system and a safety system. The safety system includes isolation vessels, heat exchangers, a coolant pipe, and a communication pipe. Fluid is distributed in the safety system according to thermal, pressure, and leak conditions.
Abstract:
Provided is a passive containment air cooling device with an isolated pressure boundary, including a heat exchanger positioned inside and outside a containment, penetrating through an outer wall of the containment to be connected to the containment through a pipe and thus form a closed loop, and including a coolant, an air induction duct circulating air outside the heat exchanger, and a cooled air exhaust unit formed in the air induction duct to increase cooling efficiency of the heat exchanger.
Abstract:
There is provided a cooling apparatus for a molten core material, including: two or more cooling material containers disposed under a reactor vessel including a nuclear reactor core and including a cooling material therein; a first screen disposed under the two or more cooling material containers and including two or more first through-holes; and a second screen disposed under the first screen and including two or more second through-holes, wherein an average size of the two or more first through-holes is greater than an average size of the two or more second through-holes.
Abstract:
Disclosed herein is a water-air combined passive feed water cooling apparatus including a water cooling heat exchanger connected to the inside of a containment building to cool down heat of a steam generator using a water cooling method, a cooling tank including the water cooling heat exchanger therein and storing cooling water condensing main steam generated by the steam generator, an evaporative steam pipe connected to the cooling tank, the evaporative steam pipe, into which steam of the cooling water generated by the water cooling heat exchanger in the cooling tank flows, an air cooling heat exchanger connected to the evaporative steam pipe and cooling down and liquefying the steam flowing into the evaporative steam pipe, and a condensed water collecting pipe for refilling the cooling tank with the steam liquefied by the air cooling heat exchanger.
Abstract:
Provided is a passive containment air cooling device with an isolated pressure boundary, including a heat exchanger positioned inside and outside a containment, penetrating through an outer wall of the containment to be connected to the containment through a pipe and thus form a closed loop, and including a coolant, an air induction duct circulating air outside the heat exchanger, and a cooled air exhaust unit formed in the air induction duct to increase cooling efficiency of the heat exchanger.