Abstract:
The present disclosure provides an object recognition apparatus, which includes: an actuator unit configured to contact an object and generate vibrations and transmit them through objects based on the inherent characteristic of the object; and a sensor unit connected to the actuator unit to receive the vibration and generate a voltage signal.
Abstract:
A method for modeling a robot simplified for stable walking control of a bipedal robot provides a robot model that is simplified as a virtual pendulum model including a virtual body, two virtual legs connected to the body at a virtual pivot point (VPP) that is set at a position higher than the center of mass (CoM) of the body, and virtual feet connected to the two legs, respectively, to step on the ground. A ground reaction force, which acts on the two legs, acts towards the VPP, thereby providing a restoring moment with respect to the CoM such that stabilization of the posture of the body naturally occurs.
Abstract:
A control system of a robot keeps an entire posture of a robot not fixed to the ground. The robot includes a body having a plurality of joints and motors mounted to a plurality of limbs and the joints, and the entire posture is maintained by controlling a center of mass (COM) of the robot. The limbs include a robot arm with an end-effector. When a target position of the end-effector (hereinafter, a “target end-effector position”) is input, a target position of the center of mass (hereinafter, a “target COM position”) is calculated using the target end-effector position. The motors mounted to the joints are operated so that the end-effector and the center of mass of the robot move according to the target end-effector position and the target COM position. The target COM position varies in proportion to the change of the target end-effector position.