Abstract:
The present invention relates to a method for preparing polymer-nanoparticles having a core-shell structure by uniformly coating a polymer on metal and inorganic particles, polymer-nanoparticles prepared thereby, and a polymer-nanoparticle composite comprising the same, and more specifically, a method for preparing polymer-nanoparticles having a core-shell structure by uniformly coating a polymer on metal and inorganic particles, polymer-nanoparticles prepared thereby, and a polymer-nanoparticle composite including the same, wherein when forming a polymer coating layer on surfaces of particles that are not subjected to separate surface treatment, excessive polymers uncoated on nanoparticles are easily removed by adding to an ionic liquid or an apolar solvent so that the polymer coating layer is formed with a nanometer-scale uniform thickness and a dense coating density, thereby showing excellent dispersibility in a polymer matrix.
Abstract:
The present invention relates to a composition for an insulator of a thin film transistor, an insulator and an organic thin film transistor comprising the same. The insulator of a thin film transistor prepared with the composition of the present invention displays an excellent permittivity along with a low surface energy, and the organic thin film transistor comprising the same displays an improved organic semiconductor morphology formed on the top surface of the insulator, so that it can bring the effect of reducing leakage current density, improving charge carrier mobility, and improving current on/off ratio.
Abstract:
The present invention relates to a method for preparing polymer-nanoparticles having a core-shell structure by uniformly coating a polymer on metal and inorganic particles, polymer-nanoparticles prepared thereby, and a polymer-nanoparticle composite comprising the same, and more specifically, a method for preparing polymer-nanoparticles having a core-shell structure by uniformly coating a polymer on metal and inorganic particles, polymer-nanoparticles prepared thereby, and a polymer-nanoparticle composite including the same, wherein when forming a polymer coating layer on surfaces of particles that are not subjected to separate surface treatment, excessive polymers uncoated on nanoparticles are easily removed by adding to an ionic liquid or an apolar solvent so that the polymer coating layer is formed with a nanometer-scale uniform thickness and a dense coating density, thereby showing excellent dispersibility in a polymer matrix.