Abstract:
Disclosed is a positively-charged single-layer electrophotographic photoreceptor in which a photosensitive layer containing at least a binding resin and a charge transporting material is provided on a photosensitive layer support base with a wall thickness of 0.7 mm or less, wherein when the charge transporting material is solely constituted by a hole transporting material, a content of the hole transporting material is 110 parts by mass or less with respect to 100 parts by mass of the binding resin, and when the charge transporting material is constituted by a hole transporting material and an electron transporting material, a content of the hole transporting material is 130 parts by mass or less and a content of the electron transporting material is 5 parts by mass or more with respect to 100 parts by mass of the binding resin.
Abstract:
Disclosed is a positively-charged electrophotographic photoreceptor which uses a tubular photosensitive layer support base with a wall thickness of (t), wherein (t) is 0.7 mm or less, a chamfer angle (a) of an end surface of the photosensitive layer support base is 30° or more and 60° or less with respect to a longitudinal tangent of a surface of a tubular photosensitive layer support base, and an outer end surface-tail edge surface width (b) of the tubular photosensitive layer support base is 0.05 mm or more.
Abstract:
Disclosed is a positively-charged single-layer electrophotographic photoreceptor in which a photosensitive layer containing at least a binding resin and a charge transporting material is provided on a photosensitive layer support base with a wall thickness of 0.7 mm or less, wherein when the charge transporting material is solely constituted by a hole transporting material, a content of the hole transporting material is 110 parts by mass or less with respect to 100 parts by mass of the binding resin, and when the charge transporting material is constituted by a hole transporting material and an electron transporting material, a content of the hole transporting material is 130 parts by mass or less and a content of the electron transporting material is 5 parts by mass or more with respect to 100 parts by mass of the binding resin.
Abstract:
A method of manufacturing a positively-charged single-layer electrophotographic photoreceptor including the steps of: producing a photosensitive layer application liquid containing a good solvent with respect to a binding resin and at least one organic solvent having a boiling point of 70° C. or higher; and forming a photosensitive layer by coating a photosensitive layer support base having a wall thickness of 0.7 mm or less, with the photosensitive layer application liquid and then drying the photosensitive layer application liquid.
Abstract:
Disclosed is a positively-charged electrophotographic photoreceptor which uses a tubular photosensitive layer support base with a wall thickness of (t), wherein (t) is 0.7 mm or less, a chamfer angle (a) of an end surface of the photosensitive layer support base is 30° or more and 60° or less with respect to a longitudinal tangent of a surface of a tubular photosensitive layer support base, and an outer end surface-tail edge surface width (b) of the tubular photosensitive layer support base is 0.05 mm or more.
Abstract:
A method of manufacturing a positively-charged single-layer electrophotographic photoreceptor including the steps of: producing a photosensitive layer application liquid containing a good solvent with respect to a binding resin and at least one organic solvent having a boiling point of 70° C. or higher; and forming a photosensitive layer by coating a photosensitive layer support base having a wall thickness of 0.7 mm or less, with the photosensitive layer application liquid and then drying the photosensitive layer application liquid.
Abstract:
A method of manufacturing a positively-charged single-layer electrophotographic photoreceptor including the steps of: producing a photosensitive layer application liquid containing a good solvent with respect to a binding resin and at least one organic solvent having a boiling point of 70° C. or higher; and forming a photosensitive layer by coating a photosensitive layer support base having a wall thickness of 0.7 mm or less, with the photosensitive layer application liquid and then drying the photosensitive layer application liquid.