摘要:
Aspects include recording media with enhanced areal density through reduction of head media spacing, head keeper spacing, or head to soft underlayer spacing. Such aspects comprise replacing currently non-magnetic components of devices, such as interlayers and overcoats with components and compositions comprising magnetic materials. Other aspects relate to magnetic seed layers deposited within a recording medium. Preferably, these aspects, embodied as methods, systems and/or components thereof reduce effective magnetic spacing without sacrificing physical spacing.
摘要:
Aspects include recording media with enhanced areal density through reduction of head media spacing, head keeper spacing, or head to soft underlayer spacing. Such aspects comprise replacing currently non-magnetic components of devices, such as interlayers and overcoats with components and compositions comprising magnetic materials. Other aspects relate to magnetic seed layers deposited within a recording medium. Preferably, these aspects, embodied as methods, systems and/or components thereof reduce effective magnetic spacing without sacrificing physical spacing.
摘要:
Aspects include recording media with enhanced areal density through reduction of head media spacing, head keeper spacing, or head to soft underlayer spacing. Such aspects comprise replacing currently non-magnetic components of devices, such as interlayers and overcoats with components and compositions comprising magnetic materials. Other aspects relate to magnetic seed layers deposited within a recording medium. Preferably, these aspects, embodied as methods, systems and/or components thereof reduce effective magnetic spacing without sacrificing physical spacing.
摘要:
Aspects include recording media with enhanced areal density through reduction of head media spacing, head keeper spacing, or head to soft underlayer spacing. Such aspects comprise replacing currently non-magnetic components of devices, such as interlayers and overcoats with components and compositions comprising magnetic materials. Other aspects relate to magnetic seed layers deposited within a recording medium. Preferably, these aspects, embodied as methods, systems and/or components thereof reduce effective magnetic spacing without sacrificing physical spacing.
摘要:
An apparatus may include a composite soft underlayer and a perpendicular magnetic recording layer overlying the composite soft underlayer. The composite soft underlayer may include a growth template layer, a negative magnetic anisotropy layer overlying the growth template layer, and a magnetically soft layer overlying the negative magnetic anisotropy layer. In some embodiments, the negative magnetic anisotropy layer includes a plurality of grains, and substantially all the grains have negative magnetic anisotropy along an axis substantially perpendicular to a major plane of the composite soft underlayer. In some embodiments, the negative magnetic anisotropy layer includes a thickness of less than or equal to about 3 nm
摘要:
A perpendicular magnetic recording layer may include a hard granular layer, an exchange break layer formed on the hard granular layer, and a soft granular layer formed on the exchange break layer. In some embodiments, the exchange break layer may consist essentially of ruthenium. In some embodiments, the perpendicular magnetic recording layer may include n magnetic layers and n−1 exchange break layers, where n is greater than or equal to three, and where the n−1 exchange break layers alternate with the n magnetic layers in the magnetic recording layer.
摘要:
An apparatus may include a composite soft underlayer and a perpendicular magnetic recording layer overlying the composite soft underlayer. The composite soft underlayer may include a growth template layer, a negative magnetic anisotropy layer overlying the growth template layer, and a magnetically soft layer overlying the negative magnetic anisotropy layer. In some embodiments, the negative magnetic anisotropy layer includes a plurality of grains, and substantially all the grains have negative magnetic anisotropy along an axis substantially perpendicular to a major plane of the composite soft underlayer. In some embodiments, the negative magnetic anisotropy layer includes a thickness of less than or equal to about 3 nm.