摘要:
An optical transmission line formed by a plurality of transmission circuits each comprising, connected in the following order, an optical fiber, an optical amplifier and an optical filter. The dispersion decrease in each optical fiber and the amplification of each optical amplifier are set for each transmission circuit such as to obtain a predetermined optical pulse width, the central frequencies of the optical filters are made to sequentially slide toward lower frequencies along the direction of propagation, and the mean zero-dispersion wavelengths of the optical fibers are made to sequentially increase along the direction of propagation. An optical transmission system according to the present invention is formed from an optical transmission line according to the present invention, an optical transmitter and an optical receiver.
摘要:
The optical fiber transmission line according to the present invention comprises first optical fibers having dispersion values greater than the average dispersion value D.sub.av over the entire transmission distance and second optical fibers having dispersion values less than the average dispersion value D.sub.av, wherein the average dispersion value D.sub.av over the entire transmission distance is in the anomalous dispersion region, the respective lengths L.sub.i and L.sub.i ' of the first and second optical fibers are shorter than the soliton length Z.sub.0 (wherein i is an arbitrary natural number), and the relationship between the lengths L.sub.i and L.sub.i ' and the larger of the respective differences D.sub.i and D.sub.i ' between the dispersion values of the first and second optical fibers and the average dispersion value D.sub.av satisfies the following condition: (L.sub.i +L.sub.i ')/Z.sub.0
摘要:
In the present invention, the extremely complicated setting and control and an extremely expensive optical component (wavelength locker) are not required, and optical output wavelength and optical output power can simply be set and controlled at a moderate price. At least one value for determining a dependence of the optical output wavelength on drive current and device temperature and at least one value for determining a dependence of the optical output power on drive current and device temperature in a light emitting device constituting first means 1 for emitting light are stored in fourth means 4. Fifth means 5 determines drive current or optical output power c and device temperature d, at which both the optical output wavelength and optical output power of the light emitting device are separately specified value b, from a relationship among the drive current, device temperature, and optical output wavelength of the light emitting device, the relationship being determined by the at least one value, and a relationship among the drive current, device temperature, and optical output power, the relationship being determined by the at least one value, and the fifth means 5 gives the drive current or optical output power c and device temperature d as target values to second means 2 and third means 3.
摘要:
In the present invention, the extremely complicated setting and control and an extremely expensive optical component (wavelength locker) are not required, and optical output wavelength and optical output power can simply be set and controlled at a moderate price. At least one value for determining a dependence of the optical output wavelength on drive current and device temperature and at least one value for determining a dependence of the optical output power on drive current and device temperature in a light emitting device constituting first means 1 for emitting light are stored in fourth means 4. Fifth means 5 determines drive current or optical output power c and device temperature d, at which both the optical output wavelength and optical output power of the light emitting device are separately specified value b, from a relationship among the drive current, device temperature, and optical output wavelength of the light emitting device, the relationship being determined by the at least one value, and a relationship among the drive current, device temperature, and optical output power, the relationship being determined by the at least one value, and the fifth means 5 gives the drive current or optical output power c and device temperature d as target values to second means 2 and third means 3.
摘要:
A first optical fiber transmission path is used to transmit continuous-wave light for upstream signal light from the center node to each of the remote nodes, while a second optical fiber transmission path is used to transmit downstream signal light from the center node to each remote node and to transmit upstream signal light (obtained by modulating continuous-wave light) from each remote node to the center node. In this network, specific wavelength bandwidths are allocated to each remote node for the continuous-wave lights (for upstream signal lights) and the downstream signal lights, and the wavelength bandwidths for the continuous-wave lights (for upstream signal lights) and the downstream signal lights are alternately set.
摘要:
Multi-wavelength light having a frequency band equal to or greater than the FSR of an AWG is demultiplexed into individual wavelength channels, and power level deviations between wavelength channels are suppressed. An optical demultiplexer includes a wavelength-group demultiplexer that demultiplexes multi-wavelength light into wavelength groups formed from wavelength channels, and channel demultiplexers that demultiplex each wavelength group into wavelength channels light. An optical multiplexer includes channel multiplexers that multiplex modulated signal light of each wavelength channel for each wavelength group, and a wavelength-group multiplexer that multiplexes, for each wavelength group, WDM signal light output from the channel multiplexers. The FSR of the wavelength-group multiplexer/demultiplexer is set to be equal to or greater than the frequency band of the multi-wavelength light. The channel multiplexer/demultiplexer is an AWG in which the FSR is approximately the full width at half maximum of the transmission characteristics of each port of the wavelength-group multiplexer/demultiplexer.
摘要:
The present invention provides wavelength monitoring and/or control enabling size reduction and low power operation without requiring a complicated optical system in its wavelength monitoring and controlling mechanism.The measurement portion (1) measures temperature by a thermistor (5) in the measurement portion, and measures a bias current by using an LD drive current detecting circuit (6). The LD temperature, optical output and bias current are measured by the measurement portion. The relationship between the LD temperature and wavelengths or between the temperature, bias current and wavelengths is stored in a memory map of the storage portion (2). The central controlling portion (3) calculates wavelengths on the basis of the temperature and the bias current or the temperature information of the measurement portion, and the relationship between the LD temperature, bias current and wavelengths or between the temperature and wavelengths of the storage portion.
摘要:
The present invention provides wavelength monitoring and/or control enabling size reduction and low power operation without requiring a complicated optical system in its wavelength monitoring and controlling mechanism. The measurement portion (1) measures temperature by a thermistor (5) in the measurement portion, and measures a bias current by using an LD drive current detecting circuit (6). The LD temperature, optical output and bias current are measured by the measurement portion. The relationship between the LD temperature and wavelengths or between the temperature, bias current and wavelengths is stored in a memory map of the storage portion (2). The central controlling portion (3) calculates wavelengths on the basis of the temperature and the bias current or the temperature information of the measurement portion, and the relationship between the LD temperature, bias current and wavelengths or between the temperature and wavelengths of the storage portion.
摘要:
An optical amplifier having a two-stage construction using an erbium doped fiber (EDF) as a gain medium. The erbium dopant concentration is 1000 ppm, and the unsaturated absorption coefficient of the signal beam at 1550 nm is 1 dB/m. The length of the EDF 14-8 is 10 m, and the length of the EDF 14-12 is 70 m. The excitation light sources 14-6 and 14-10 are semiconductor lasers of 1.53 &mgr;m, and the excitation light power is 100 mW. Multiplexers 14-7 and 14-11 are inductive multi-layer film filters, and the gain equalizer 14-4 is a Fourier filter. The peak loss of the Fourier filter is 17 dB. The gain of the EDF 14-8 is 25 dB, and the gain of the EDF 14-12 is 15 dB. Two optical isolators are installed on a pre-stage amplifier, and one on a post-stage amplifier in order to prevent laser oscillation.
摘要:
A resistance welder controller is disclosed, which controls a resistance welder for welding workpieces clamped between two electrodes with Joule heat generated by passing a welding current between the electrodes. The controller includes a preliminary current passing device for passing preliminary current between the electrodes until the workpieces and the electrodes become intimate with one another, a regular current passing device for passing regular current between the electrodes for welding the workpieces, a current control device for controlling the welding current according to the rate of expansion of the workpieces or the rate of increase of the resistance of the workpieces, and a current passing ending device for ending the welding current at or after an instant when the rate of expansion of the workpieces or the rate of increase of the resistance of the workpieces has become substantially zero.