摘要:
A grain-oriented silicon steel sheet having excellent magnetic properties can be stably produced by adjusting properly the C content in a silicon steel to be used as a starting material depending upon the Si content in the steel, removing a proper amount of C from the steel during the course after the hot rolling and before the final cold rolling, and further carrying out the final cold rolling at a reduction rate of 40-80%.
摘要:
A grain-oriented silicon steel sheet having high magnetic induction and low iron loss can be produced by controlling properly the particle size of carbide precipitated in the crystal grains of the steel sheet before final cold rolling. Further, the magnetic properties can be more improved by adjusting the C content in a starting silicon steel depending upon the Si content in the steel and removing a proper amount of C from the steel during the course after completion of hot rolling and before final cold rolling, in addition to the proper control of the particle size of carbide precipitated in the crystal grains of the steel sheet before final cold rolling.
摘要:
A grain-oriented electrical steel sheet having a very high magnetic induction is obtained by developing secondary recrystallized grains at a specifically limited secondary recrystallization temperature in a cold rolled silicon steel sheet containing substantially no antimony and aluminum and having a specifically limited low nitrogen content.
摘要:
Single-oriented electrical steel sheets having a high magnetic induction are produced by combining specifically limited conditions in the composition of raw material, the final cold rolling reduction rate and in the secondary recrystallizing annealing.
摘要:
A grain-oriented silicon steel sheet having a low iron loss free from deterioration due to the stress-relief annealing, can be obtained by forming on its surface a forsterite film locally having regions, which have a thickness different from that of the remaining regions in the film, or locally having filmless regions which do not coat the steel sheet surface.
摘要:
A grain-oriented silicon steel sheet having a low iron loss free from deterioration due to the stress-relief annealing, can be obtained by forming on its surface a forsterite film locally having regions, which have a thickness different from that of the remaining regions in the film, or locally having filmless regions which do not coat the steel sheet surface.
摘要:
A grain-oriented silicon steel sheet having a low iron loss, due to the subdividing effect of magnetic domain wall spacing, free from deterioration due to the stress-relief annealing, can be obtained by forming on its surface a forsterite film locally having regions, which have a thickness different from that of the remaining regions in the film, or locally having filmless regions which do not coat the steel sheet surface.