摘要:
The present disclosure relates to an optical member in which an antireflection concave-convex structure for suppressing reflection of light is provided on its surface, and an optical system, an optical unit and an optical device each including the optical member.The present disclosure provides an optical member in which the generation of reflection light and diffraction light is sufficiently suppressed and which can be fabricated in a simple manner.A antireflection concave-convex structure (15) for suppressing reflection of light, formed of filiform convex portions (16) regularly arranged, is provided on an interior surface (1a) of a lens tube (1). The antireflection concave-convex structure (15) is configured so that an angle between a normal vector of an incident plane of the light whose reflection is to be suppressed and a vector connecting respective apexes of adjacent two of the structure units at the incident surface is 60 degrees or less.
摘要:
The present invention relates to an optical element and, more particularly relates to an optical element having at least one surface in which an antireflection concave-convex structure is formed.The present invention provides an optical member in which the generation of diffraction light and reflection is sufficiently suppressed and which has a structure that can be formed in a simple manner.On a first lens surface (10) of a lens 1, an antireflection concave-convex structure (11) including a plurality of cone convex portions (12) regularly arranged is formed. The antireflection concave-convex structure (11) is for suppressing reflection of light having a wavelength equal to or larger than a cycle of the cone convex portions (12). The antireflection concave-convex structure (11) is formed so that the cycle and/or a height of the structure units differ among regions of the first surface (10).
摘要:
A light quantity distribution control element includes a substrate of 20 mm×20 mm×3 mm made of a material that transmits light, such as optical glass or acryl, and a antireflective structure provided on a surface of the substrate. As the antireflective structure, a conical antireflective structure of a pitch of 0.15 μm (periodic structure having conical convexities) is formed. This corresponds to a antireflective structure having a pitch of a wavelength or less in the ultraviolet band (150 nm to 400 nm) at the time when ultraviolet light is used as incident light.
摘要:
A light quantity distribution control element includes a substrate of 20 mm×20 mm×3 mm made of a material that transmits light, such as optical glass or acryl, and a antireflective structure provided on a surface of the substrate. As the antireflective structure, a conical antireflective structure of a pitch of 0.15 μm (periodic structure having conical convexities) is formed. This corresponds to a antireflective structure having a pitch of a wavelength or less in the ultraviolet band (150 nm to 400 nm) at the time when ultraviolet light is used as incident light.
摘要:
The present invention relates to a structure comprising: a resin pattern (A)3 formed on a base material 1 and having structure units of a predetermined shape; and a resin pattern (B)5 formed on a surface of the resin pattern (A)3 and having microscopic structure units, of a predetermined shape, arranged at a period shorter than or equal to a wavelength range of a using light, and to a method for producing the structure, comprising the steps of: (i) forming a resin layer 2 on the base material 1 and subjecting the resin layer 2 to an exposure-development process so as to form the resin pattern (A)3; and (ii) subjecting a surface of the resin pattern (A)3 to an exposure-development process so as to form the resin pattern (B)5, wherein the steps (i) and (ii) are sequential.
摘要:
A light quantity distribution control element includes a substrate of 20 mm×20 mm×3 mm made of a material that transmits light, such as optical glass or acryl, and a antireflective structure provided on a surface of the substrate. As the antireflective structure, a conical antireflective structure of a pitch of 0.15 μm (periodic structure having conical convexities) is formed. This corresponds to a antireflective structure having a pitch of a wavelength or less in the ultraviolet band (150 nm to 400 nm) at the time when ultraviolet light is used as incident light.
摘要:
The present invention relates to a structure comprising: a resin pattern (A)3 formed on a base material 1 and having structure units of a predetermined shape; and a resin pattern (B)5 formed on a surface of the resin pattern (A)3 and having microscopic structure units, of a predetermined shape, arranged at a period shorter than or equal to a wavelength range of a using light, and to a method for producing the structure, comprising the steps of: (i) forming a resin layer 2 on the base material 1 and subjecting the resin layer 2 to an exposure-development process so as to form the resin pattern (A)3; and (ii) subjecting a surface of the resin pattern (A)3 to an exposure-development process so as to form the resin pattern (B)5, wherein the steps (i) and (ii) are sequential.
摘要:
A light quantity distribution control element includes a substrate of 20 mm×20 mm×3 mm made of a material that transmits light, such as optical glass or acryl, and a antireflective structure provided on a surface of the substrate. As the antireflective structure, a conical antireflective structure of a pitch of 0.15 μm (periodic structure having conical convexities) is formed. This corresponds to a antireflective structure having a pitch of a wavelength or less in the ultraviolet band (150 nm to 400 nm) at the time when ultraviolet light is used as incident light.
摘要:
A diffusing plate is formed so as to have a surface having a larger surface roughness than a predetermined wavelength and having an aperiodic roughness shape. A plurality of fine concave/convex portions are formed on the surface so as to be arranged within a cycle equal to and smaller than a predetermined wavelength.
摘要:
A diffusing plate is formed so as to have a surface having a larger surface roughness than a predetermined wavelength and having an aperiodic roughness shape. A plurality of fine concave/convex portions are formed on the surface so as to be regularly arranged within a cycle equal to and smaller than a predetermined wavelength.