摘要:
A multi-flow optical transceiver provided with a plurality of wavelength-tunable light sources, a plurality of optical modulation units which modulates light with an input signal, an optical multiplexing/demultiplexing switch which couples light from at least one of the wavelength-tunable light sources to at least one of the optical modulation units with any power, and an optical coupling unit which couples a plurality of lights, modulated by a plurality of the optical modulation units, to at least one waveguide.
摘要:
A multi-flow optical transceiver provided with a plurality of wavelength-tunable light sources, a plurality of optical modulation units which modulates light with an input signal, an optical multiplexing/demultiplexing switch which couples light from at least one of the wavelength-tunable light sources to at least one of the optical modulation units with any power, and an optical coupling unit which couples a plurality of lights, modulated by a plurality of the optical modulation units, to at least one waveguide.
摘要:
An optical communication apparatus, in the sending side, distributes client signals according to destinations and a communication capacity of each destination, electrical-to-optical converts the distributed signals to optical signals having different center frequencies, and multiplexes the optical signals to output, and in the receiving side, the optical communication apparatus divides the wavelength division multiplexed signal to each wavelength (for each sending source), optical-to-electrical converts the divided optical signals to electrical signals, and multiplexes the electrical signals to output. An add/drop port of an optical route switching apparatus includes an input/output port to the optical communication apparatus, and an optical frequency bandwidth is variable according to an optical spectrum width of the optical signal. A network is constructed by using the optical communication apparatus and the optical route switching apparatus.
摘要:
A bandwidth variable communication apparatus includes: a route exchange unit including a route exchange function for switching an output port of a stream signal of one or more wavelengths input from an input port based on both or a part of wavelength and time, and including a bandwidth change function for changing passable frequency bandwidth in a section from the input port to the output port through which the stream signal passes; and a control unit including a control information transmit-receive function for transmitting and receiving control information for both or a part of the route exchange function and the bandwidth change function of the route exchange unit, and including a control function for controlling the route exchange unit based on the control information. All or a part of the input ports and the output ports are connected to other communication apparatuses via transmission routes.
摘要:
A bandwidth variable communication apparatus includes: a route exchange unit including a route exchange function for switching an output port of a stream signal of one or more wavelengths input from an input port based on both or a part of wavelength and time, and including a bandwidth change function for changing passable frequency bandwidth in a section from the input port to the output port through which the stream signal passes; and a control unit including a control information transmit-receive function for transmitting and receiving control information for both or a part of the route exchange function and the bandwidth change function of the route exchange unit, and including a control function for controlling the route exchange unit based on the control information. All or a part of the input ports and the output ports are connected to other communication apparatuses via transmission routes.
摘要:
An optical communication apparatus, in the sending side, distributes client signals according to destinations and a communication capacity of each destination, electrical-to-optical converts the distributed signals to optical signals having different center frequencies, and multiplexes the optical signals to output, and in the receiving side, the optical communication apparatus divides the wavelength division multiplexed signal to each wavelength (for each sending source), optical-to-electrical converts the divided optical signals to electrical signals, and multiplexes the electrical signals to output. An add/drop port of an optical route switching apparatus includes an input/output port to the optical communication apparatus, and an optical frequency bandwidth is variable according to an optical spectrum width of the optical signal. A network is constructed by using the optical communication apparatus and the optical route switching apparatus.
摘要:
An optical transmission system is provided in which the optimum operating point of a Mach-Zehnder interferometer, matched to the optical frequency of the light source on the transmitting side, can be set. The optical receiver (2) has an infinitesimal-modulated signal component detection circuit (222), which uses the signal train output from a balanced detection circuit (221) to detect the infinitesimal-modulated signal component applied to the phase adjustment terminal (201) of an MZI (200) by an infinitesimal-modulated signal oscillation circuit (224); a synchronous detection circuit (223), which synchronously detects the infinitesimal-modulated signals output from the infinitesimal-modulated signal component detection circuit (222) and infinitesimal-modulated signal oscillation circuit (224) and detects the error signal component arising from the shift between the optical signal carrier frequency and the optical frequency characteristic of the MZI (200); and a controller (207), which outputs a control signal to adjust the phase difference between two split optical signals output from the MZI (200) so as to correct the shift amount.
摘要:
An optical transmission system is provided in which the optimum operating point of a Mach-Zehnder interferometer, matched to the optical frequency of the light source on the transmitting side, can be set. The optical receiver (2) has an infinitesimal-modulated signal component detection circuit (222), which uses the signal train output from a balanced detection circuit (221) to detect the infinitesimal-modulated signal component applied to the phase adjustment terminal (201) of an MZI (200) by an infinitesimal-modulated signal oscillation circuit (224); a synchronous detection circuit (223), which synchronously detects the infinitesimal-modulated signals output from the infinitesimal-modulated signal component detection circuit (222) and infinitesimal-modulated signal oscillation circuit (224) and detects the error signal component arising from the shift between the optical signal carrier frequency and the optical frequency characteristic of the MZI (200); and a controller (207), which outputs a control signal to adjust the phase difference between two split optical signals output from the MZI (200) so as to correct the shift amount.
摘要:
An optical transmitter for realizing a high tolerance with respect to the group velocity dispersion of the optical fibers, a small receiver sensitivity degradation, and an improved stability that is hardly affected by the group velocity dispersion even in the case of network scale expansion, is constructed by a light source section for generating optical clock pulses synchronized with a signal bit rate while maintaining a duty ratio of the optical clock pulses constant, which is capable of variably setting the duty ratio, and an encoding section for encoding the optical clock pulses by using electric signals synchronized with the optical clock pulses while setting a relative optical phase difference between the optical clock pulses in adjacent time-slots to be an odd integer multiple of &pgr;.
摘要:
In a transmitter side in an optical transmission system, an input binary signal is converted into a duobinary signal, and the duobinary signal is applied to an optical modulation device which provides an optical intensity modulation signal, wherein the optical intensity for a center value of the duobinary signal is a minimum, the optical intensity for the other two values of the duobinary signal is a maximum, and an optical phase for those two values is opposite to each other. In a receiver side, simple direct detection is carried out for receiving optical signal through an optical transmission line to provide a demodulated binary signal. Thus, an original binary signal is recovered without a duobinary decoder and receiver sensitivity degradation. In the optical transmission system, an optical carrier frequency component in a signal spectrum is suppressed, a signal bandwidth of the modulated light is reduced in half to that of a prior art, so an optical transmission system for long distance, high bit rate and large traffic capacity is obtained.