摘要:
An optical element of the invention comprises at least two laminated layers of at least one kind of reflective polarizer (a); and at least one layer of at least one kind of retardation layer (b) for changing polarization properties laminated between the reflective polarizers (a), the combination of the layers being designed so as to provide a incident-light transmittance depending on an incident angle of an incident light and designed such that a shielded light is not absorbed but reflected, wherein at least one layer of the reflective polarizer (a) is a circular polarization type reflective polarizer (a1) capable of transmitting a certain circularly polarized light and selectively reflecting an oppositely circularly polarized light; at least one layer of the reflective polarizer (a) is a linear polarization type reflective polarizer (a2) capable of transmitting one of perpendicular linearly polarized lights and selectively reflecting the other of the perpendicular linearly polarized lights; and the retardation layer (b) is a layer (b1) having a front (in the normal direction) retardation value of about λ/4 and having a retardation value of at least λ/8 with respect to an incident light inclined by at least 30° to the normal direction. The optical element can effectively shield transmitted lights with respect to obliquely incident lights and can control coloring.
摘要:
An optical element of the invention comprises at least two laminated layers of reflective polarizer; and at least one retardation layer for changing polarization properties laminated between the reflective polarizers, the combination of the layers being designed so as to provide a incident-light transmittance depending on an incident angle of an incident light and designed such that a shielded light is not absorbed but reflected. The optical element can effectively shield transmitted lights with respect to obliquely incident lights and can control coloring.
摘要:
A light source comprising sidelight type backlight light guide plate (L), wherein a transmittance angle dependent layer (T1) which transmits normally incident light and reflects obliquely incident light is disposed on one surface of the sidelight type backlight light guide plate (L), and a reflection plate (R) having a repetitive slope structure is disposed on the other surface of the sidelight type backlight light guide plate (L). The invention light source is less in absorption loss due to repetition of light reflection and the like.
摘要:
An optical element comprising: a polarizing element (A), separating incident light into polarization to then emit light, and made of a cholesteric liquid crystal, and a linearly polarized light reflection polarizer (B) transmitting linearly polarized light with one polarization axis and selectively reflecting linearly polarized light with the other polarization axis perpendicular to the one polarization axis, wherein the polarizing element (A) has a distortion rate with respect to emitting light to incident light in the normal direction of 0.5 or more and a distortion rate with respect to emitting light to incident light at an angle inclined from the normal direction by 60 degrees or more of 0.2 or less, the polarizing element (A) has a function increasing a linearly polarized light component of emitting light as incidence angle is larger; is capable of condensation and collimation of incident light from a light source and capable of suppressing transmission of light in an arbitrary direction.
摘要:
A light source comprising sidelight type backlight light guide plate (L), wherein a transmittance angle dependent layer (T1) which transmits normally incident light and reflects obliquely incident light is disposed on one surface of the sidelight type backlight light guide plate (L), and a reflection plate (R) having a repetitive slope structure is disposed on the other surface of the sidelight type backlight light guide plate (L). The invention light source is less in absorption loss due to repetition of light reflection and the like.
摘要:
An optical element of the invention comprises at least two laminated layers of reflective polarizer; and at least one retardation layer for changing polarization properties laminated between the reflective polarizers, the combination of the layers being designed so as to provide a incident-light transmittance depending on an incident angle of an incident light and designed such that a shielded light is not absorbed but reflected. The optical element can effectively shield transmitted lights with respect to obliquely incident lights and can control coloring.
摘要:
An optical element comprising: a polarizing element (A), separating incident light into polarization to then emit light, and made of a cholesteric liquid crystal, wherein the polarizing element (A) has a distortion rate with respect to emitting light to incident light in the normal direction of 0.5 or more and a distortion rate with respect to emitting light to incident light at an angle inclined from the normal direction by 60 degrees or more of 0.2 or less, the polarizing element (A) has a function increasing a linearly polarized light component of emitting light as incidence angle is larger; a ½ wavelength plate (B); a retardation layer (C) giving almost zero retardation to incident light in the front direction (normal direction) and giving a retardation to incident light in a direction inclined from the normal direction; and a ¼ wavelength plate (D); being arranged in this order, and further a linearly polarized light reflection polarizer (E), transmitting linearly polarized light with one polarization axis and selectively reflecting linearly polarized light with the other polarization axis perpendicular to the one polarization axis, is arranged on the ¼ wavelength plate (D) so that the transmission axis of the linearly polarized light reflection polarizer (E) and an axis of the transmitted light, which is transmitted through the polarizing element (A) to the ¼ wavelength plate (D) in this order, are the same direction. The optical element is capable of condensation and collimation of incident light from a light source and capable of suppressing transmission of light in an arbitrary direction.
摘要:
A rotatory polarization plate capable of extracting an emission polarized light from an incident polarized light and rotating an azimuth angle of an polarization axis of the incident polarized light, wherein a rotatory polarization angle of the azimuth angle is changed by an incidence angle of the incident polarized light, is useful for an optical element capable of condensing and collimating incident light from a light source in a specific direction.
摘要:
A light source comprising sidelight type backlight light guide plate (L), wherein a transmittance angle dependent layer (T1) which transmits normally incident light and reflects obliquely incident light is disposed on one surface of the sidelight type backlight light guide plate (L), and a reflection plate (R) having a repetitive slope structure is disposed on the other surface of the sidelight type backlight light guide plate (L). The invention light source is less in absorption loss due to repetition of light reflection and the like.
摘要:
An optical element of the invention comprises at least two laminated layers of at least one kind of reflective polarizer (a); and at least one layer of at least one kind of retardation layer (b) for changing polarization properties laminated between the reflective polarizers (a), the combination of the layers being designed so as to provide a incident-light transmittance depending on an incident angle of an incident light and designed such that a shielded light is not absorbed but reflected, wherein at least one layer of the reflective polarizer (a) is a circular polarization type reflective polarizer (a1) capable of transmitting a certain circularly polarized light and selectively reflecting an oppositely circularly polarized light; at least one layer of the reflective polarizer (a) is a linear polarization type reflective polarizer (a2) capable of transmitting one of perpendicular linearly polarized lights and selectively reflecting the other of the perpendicular linearly polarized lights; and the retardation layer (b) is a layer (b1) having a front (in the normal direction) retardation value of about λA/4 and having a retardation value of at least λA/8 with respect to an incident light inclined by at least 30° to the normal direction. The optical element can effectively shield transmitted lights with respect to obliquely incident lights and can control coloring.