摘要:
A welding control apparatus according to the present invention includes an integrator for starting calculation of a voltage error integral value Sv2, expressed by a formula (1) given below, from a time when a first pulse period ends and a second pulse period starts in a pulse cycle, based on various data of information regarding a gradient Ks of an external characteristic of a welding power supply and a welding current setting value Is2 and a welding voltage setting value Vs2 both in a second pulse period, which are preset as parameters in the formula (1), as well as on an instantaneous value Io2 of a welding current and an instantaneous value Vo2 of a welding voltage both detected in the second pulse period, a comparator for comparatively determining whether a value of the voltage error integral value Sv2 provided as the calculation result has become 0, and a waveform generator for, per pulse cycle, terminating the relevant pulse cycle and starting a next pulse cycle at a time when the value of the voltage error integral value Sv2 has become 0, whereby a variation in an arc length caused by disturbances is precisely suppressed in pulse arc welding of consumed electrode type: Sv2=∫{Ks(Io2−Is2)+Vs2−Vo2}dt (1)
摘要:
In consumable electrode type gas shielded arc welding, a time second order differential value of a welding voltage or an arc resistance is calculated. Based on the second order differential value, a detachment of a droplet or a timing just before the detachment is detected. After the droplet detachment or the timing just before the detachment is detected, a welding current value is immediately switched to a predetermined current value lower than that at the time of the detection. According to the control, even if welding conditions are changed or wire extension lengths are changed in the welding, the droplet detachment can be correctly detected.
摘要:
The present invention provides a welding control apparatus including: a droplet separation detecting unit that detects separation of a droplet from a tip end of welding wire; and a waveform generator that alternately generates a first pulse for separating the droplet and a second pulse for shaping the droplet and outputs the generated pulse to a welding power source, the waveform generator generating a third pulse having a pulse shape different in a pulse peak current and/or a pulse width from the second pulse to output the generated third pulse to the welding pulse source after a base time of the first pulse if separation of the droplet is not detected within a peak period, a falling slope period, or a base period of the first pulse to thereby restore a droplet supply regularity.
摘要:
In a two-electrode welding method of the present invention, a leading electrode is used to perform gas-shielded arc welding and a trailing electrode is an energized filler. A trailing electrode wire protrudes from a guide lead or guide tip and is energized from an energizing tip. The distance between a welding surface and the energizing tip is 100 mm or more and 1500 mm or less. The distance between electrodes is 10 mm or less. The electric current of the leading electrode is 250 A or more, and the electric current of the trailing electrode is 10 A or more and 50% or less of the electric current of the leading electrode. The feeding speed of the trailing electrode wire is 20% or more and 50% or less of the feeding speed of the leading electrode wire.
摘要:
Disclosed is a method for performing gas-shielded pulsed arc welding at high current densities with a flux-cored wire as an electrode wire. The pulsed arc welding is carried out by passing a pulsed current so that a pulse peak current density during a pulse peak time Tp is 400 to 950 A/mm2, a pulse base current density during a pulse base time Tb is 200 A/mm2 or more and differs from the pulse peak current density by 200 to 400 A/mm2, and an average current density is 350 to 750 A/mm2. The method allows significant spatter reduction while attaining a high deposition rate.
摘要翻译:公开了一种以药芯焊丝作为电极线以高电流密度进行气体屏蔽脉冲电弧焊的方法。 通过使脉冲电流通过脉冲电弧焊接进行脉冲峰值时间Tp为400〜950A / mm 2的脉冲峰值电流密度,脉冲基准时间Tb期间的脉冲基极电流密度为200A / mm2, 脉冲峰值电流密度不同于200〜400A / mm 2,平均电流密度为350〜750A / mm2。 该方法允许在获得高沉积速率的同时显着降低飞溅。
摘要:
In consumable-electrode gas-shield arc welding, carbon dioxide gas is used as shield gas; the molten pool is formed using a pulsed arc as a leading electrode arc transferring one droplet per cycle by alternately outputting, in each cycle, pulses of two different pulse waveforms of which a pulse peak current level and/or a pulse width per period differ; the conductively heated filler wire is inserted into the molten pool as a trailing electrode; the distance between a tip of the filler wire inserted into the molten pool and a conductive point of the filler wire is set within a range of 200×10−3 to 500×10−3 m; and a leading-electrode base current value is set larger than a trailing-electrode filler current value. According to such a method, even when inexpensive carbon dioxide gas is used as shield gas, the amount of spatter can be reduced, and high weldability can be achieved in multipass welding.