摘要:
A magneto-optical recording medium capable of perfectly masking a mark adjacent to a mark to be reproduced thereby improving a reproduction output. The magneto-optical recording medium includes a transparent substrate, a magnetic reproducing layer laminated on the transparent substrate, a nonmagnetic intermediate layer laminated on the magnetic reproducing layer, and a magnetic recording layer laminated on the nonmagnetic intermediate layer. The reproducing layer has an easy direction of magnetization in a plane at room temperature, and has an easy direction of magnetization perpendicular to a film surface at a given temperature or higher. The nonmagnetic intermediate layer is thin enough to allow magnetostatic bond between the recording layer and the reproducing layer at the given temperature or higher. Instead of the nonmagnetic intermediate layer, a magnetic intermediate layer having an easy direction of magnetization in a plane from room temperature to its Curie temperature may be interposed between the reproducing layer and the recording layer.
摘要:
A magneto-optical recording medium capable of perfectly masking a mark adjacent to a mark to be reproduced thereby improvng reproduction output. The magneto-optical recording medium includes a transparent substrate, a magnetic reproducing layer laminated on the transparent substrate, a nonmagnetic intermediate layer laminated on the magnetic reproducing layer, and a magnetic recording layer laminated on the nonmagnetic intermediate layer. The reproducing layer has an easy direction of magnetization in a plane at room temperature, and has an easy direction of magnetization perpendicular to a film surface at a given temperature or higher. The nonmagnetic intermediate layer is thin enough to allow magnetostatic bond between the recording layer and the reproducing layer at the given temperature or higher. Instead of the nonmagnetic intermediate layer, a magnetic intermediate layer having an easy direction of magnetization in a plane from room temperature to its Curie temperature may be interposed between the reproducing layer and the recording layer.
摘要:
A magneto-optical recording medium having a recording layer made of a bismuth-substituted garnet and deposited by a sputtering over an amorphous substrate of aluminosilicate or borosilicate glass, the recording medium including a garnet underlayer of either a double-layer or single-layer structure. The formation of an underlayer of a double-layer structure made of garnet reduces the level of noise due to light scattering at crystalline boundaries in the garnet film. The formation of an underlayer of a single-layer structure made of a garnet having a lower crystallization temperature than a YIG film is also effective to noise-level reduction. An underlayer has a surface smoothness corresponding to a roughness of approximately 10 .ANG., which is improved from the surface smoothness of a conventional underlayer comprising a YIG film.
摘要:
A magneto-optic disk has a readout layer formed of a bismuth-substituted garnet having a chemical composition represented by Bi.sub.x R.sub.3-x M.sub.y Fe.sub.5-y O.sub.12 and a recording layer formed of a nonbismuth-substituted garnet having a chemical composition represented by R.sub.3 M, Fe.sub.5-z O.sub.12 (where 0.ltoreq.x.ltoreq.3, 0.ltoreq.y
摘要翻译:磁光盘具有由具有由Bix R3-x My Fe5-yO12表示的化学组成的铋取代石榴石形成的读出层和由具有由R3 M表示的化学组成的无铋取代石榴石形成的记录层 ,Fe5-z O12(其中0 = 3,0 y <2,0
摘要:
A magneto-optical recording medium of a three-layered structure (consisting of a readout layer, an intermediate layer, and a recording layer), capable of double-mask magnetically-induced super-resolution readout, has magnetic properties such that the exchange coupled force between the readout layer (a GdFeCo film) and the intermediate layer (a GdFe film) decrease with increasing temperature, while the exchange coupled force between the intermediate layer and the recording layer (a TbFeCo film) increase with increasing temperature. The magnetic property of the readout layer is transition-metal magnetization dominant, and that of the intermediate layer is rare-earth magnetization dominant. When reading the medium, a region (an intermediate-temperature transfer region) where the magnetization in the readout layer is oriented in the direction of magnetization in the recording layer, and a region (a high-temperature rear mask) where the magnetization in the readout layer is oriented in a second specific direction, are simultaneously formed within a beam spot from a state (a low-temperature front mask) in which the magnetization in the readout layer is oriented in a first specific direction, thus achieving a double mask condition in a single step. Overwrite recording and magnetically-induced super-resolution readout are realized on the same magneto-optical recording medium.
摘要:
A magneto-optical recording medium of a three-layered structure (consisting of a readout layer, an intermediate layer, and a recording layer), capable of double-mask magnetically-induced super-resolution readout, has magnetic properties such that the exchange coupled force between the readout layer (a GdFeCo film) and the intermediate layer (a GdFe film) decrease with increasing temperature, while the exchange coupled force between the intermediate layer and the recording layer (a TbFeCo film) increase with increasing temperature. The magnetic property of the readout layer is transition-metal magnetization dominant, and that of the intermediate layer is rare-earth magnetization dominant. When reading the medium, a region (an intermediate-temperature transfer region) where the magnetization in the readout layer is oriented in the direction of magnetization in the recording layer, and a region (a high-temperature rear mask) where the magnetization in the readout layer is oriented in a second specific direction, are simultaneously formed within a beam spot from a state (a low-temperature front mask) in which the magnetization in the readout layer is oriented in a first specific direction, thus achieving a double mask condition in a single step. Overwrite recording and magnetically-induced super-resolution readout are realized on the same magneto-optical recording medium.
摘要:
A master medium for magnetic transfer includes a substrate having a concave portion formed in its surface corresponding to a pattern of recorded information to be transferred; a first perpendicular ferromagnetic layer deposited in the concave portion; and a second perpendicular ferromagnetic layer layered on the substrate surface and the first perpendicular ferromagnetic layer surface. The substrate surface and the first perpendicular ferromagnetic layer surface are flattened to form a single flat surface. In the master medium for magnetic transfer, a magnetic field change in a direction parallel to the substrate surface at a magnetization boundary of the first perpendicular ferromagnetic layer is steep. Since the influence of the change of an external magnetic field is reduced, it is possible to perform accurate transfer from the master medium for magnetic transfer to a slave medium for magnetic recording.
摘要:
The invention is a magneto-optical recording medium characterized by containing at least a soft magnetic layer, a protective layer, a resin layer having a servo pattern formed thereon, a reflecting film, a lower dielectric material film, a recording film, an upper dielectric material film, and a cover layer, formed on a substrate in this order.
摘要:
A magneto-optical recording medium, and a method of its production, a method of reading and an apparatus of reading the same capable of decreasing the magnetic field to be applied during MSR readout, or reading without applying magnetic field, by including first, second and third magnetic layers having specified magnetic characteristics.
摘要:
A magneto-optical recording medium, and a method of its production, a method of reading and an apparatus of reading the same capable of decreasing the magnetic field to be applied during MSR readout, or reading without applying magnetic field, by including first, second and third magnetic layers having specified magnetic characteristics.