摘要:
A method for temperature compensation of transmit power of a wireless communication device begins by measuring transmit power of the wireless communication device at a first temperature-based biasing condition to produce a first measured transmit power. The method continues by measuring transmit power of the wireless communication device at a second temperature-based biasing condition to produce a second measured transmit power. The method continues by determining ambient temperature of at least a portion of the wireless communication device based on the first and second measured transmit powers and a relationship between the first and second temperature-based biasing conditions. The method continues by compensating transmit power level of the wireless communication device based on the ambient temperature.
摘要:
Angle of arrival and/or range estimation within a wireless communication device. Appropriate processing of communications received by a wireless communication device is performed to determine the angle of arrival of the communication (e.g., with respect to some coordinate basis of the wireless communication device). Also, appropriate processing of the communications may be performed in accordance with range estimation as performed by the wireless communication device to determine the distance between the transmitting and receiving wireless communication devices. There are two separate modes of packet processing operations that may be performed: (1) when contents of the received packet are known, and (2) when contents of the received packet are unknown. The wireless communication device includes a number of antenna, and a switching mechanism switches from among the various antennae capitalizing on the spatial diversity of the antennae to generate a multi-antenna signal.
摘要:
Angle of arrival and/or range estimation within a wireless communication device. Appropriate processing of communications received by a wireless communication device is performed to determine the angle of arrival of the communication (e.g., with respect to some coordinate basis of the wireless communication device). Also, appropriate processing of the communications may be performed in accordance with range estimation as performed by the wireless communication device to determine the distance between the transmitting and receiving wireless communication devices. There are two separate modes of packet processing operations that may be performed: (1) when contents of the received packet are known, and (2) when contents of the received packet are unknown. The wireless communication device includes a number of antenna, and a switching mechanism switches from among the various antennae capitalizing on the spatial diversity of the antennae to generate a multi-antenna signal.
摘要:
A method for temperature compensation of transmit power of a wireless communication device begins by measuring transmit power of the wireless communication device at a first temperature-based biasing condition to produce a first measured transmit power. The method continues by measuring transmit power of the wireless communication device at a second temperature-based biasing condition to produce a second measured transmit power. The method continues by determining ambient temperature of at least a portion of the wireless communication device based on the first and second measured transmit powers and a relationship between the first and second temperature-based biasing conditions. The method continues by compensating transmit power level of the wireless communication device based on the ambient temperature.
摘要:
A method and system for optimizing data throughput in a Bluetooth communication system is provided. The method may include determining the bit error rate (BER) of a first Bluetooth packet type of a plurality of Bluetooth packet types transmitted at a first power output level by a Bluetooth transmitter and selecting a second packet type from the plurality of Bluetooth packet types in response to determining the bit error rate. The different packet types may comprise DM1, DM3, DM5, DH1, DH3, DH5, HV1, HV2, HV3, 2DH1, 2DH3, 2DH5, 3DH1, 3DH3, and 3DH5 Bluetooth packets. The method may also include estimating the BER from the packet error rate (PER) of the first Bluetooth packet type, where the PER may be computed by comparing a number of packets of said first Bluetooth packet type with good CRCs to a number of packets of said first Bluetooth packet type with bad CRCs.
摘要:
In a radio comprising a transmitter and a receiver, transmission and reception of signals may be controlled based on received signal strength measurements from a signal strength indicator module and transmitted signal strength measurements from the signal strength indicator module. For the transmitted signal strength measurements, the shared signal strength indicator module may measure signal strength of a signal output by a power amplifier. For the received signal strength measurements, the shared signal strength indicator module may measure signal strength of a received signal. A capacitance coupled to an output of the power amplifier may be configured based on a frequency of the signal output by the power amplifier. A gain of the power amplifier may be controlled based on the transmitted signal strength measurements. For the transmitted signal strength measurements, an analog-to-digital converter may process the signal output by the power amplifier.
摘要:
Methods and systems for processing an RF signal are disclosed herein. Aspects of the method may comprise utilizing a single input CORDIC and a single output CORDIC for synchronizing and demodulating a received signal, wherein the received signal may comprise one or more bit rates. The received signal may comprise a one megabit per second (Mbps) signal. The single input CORDIC may be configured to operate in a rotating mode and the single output CORDIC may be configured to operate in a rotating mode and/or an arctangent (ARCTAN) mode. A rotated output of the single input CORDIC may be correlated with a phase shift keying (PSK) synchronization (sync) word and a portion of the correlated rotated output of the single input CORDIC may be buffered.
摘要:
A method for frequency selection in a wireless communication system, includes performing in a wireless device, receiving at least one signal at a current frequency; processing at least one data packet received via the received at least one signal to determine the presence of bit errors; characterizing the received at least one signal received at the current frequency based on the processing of the at least one data packet; classifying the current frequency based on at least the characterization of the received at least one signal; and selecting the current frequency based on the classification. At least one signal strength measurement may be performed on the received at least one signal, and the processing of the at least one data packet may be performed within a current channel classification update interval.
摘要:
Systems and methods are described for managing bit errors present in a series of encoded bits representative of a portion of an audio signal, wherein the series of encoded bits is received over a communication link in an audio communications system. At least one characteristic of a portion of a received modulated carrier signal that is demodulated to produce the series of encoded bits is determined. A number of bit errors present in the series of encoded bits is then determined based on the at least one characteristic. Based on the estimated number of bit errors, one of a plurality of methods for producing a series of digital audio samples representative of the portion of the audio signal is selectively performed. The series of digital audio samples produced by the selected method is then converted into a form suitable for playback to a user.
摘要:
Various aspects of a method and system from signal quality measurement based on mean phase error magnitude of a signal are presented. Aspects of the system may comprise circuitry that receives a time phase corrected Bluetooth signal via an RF channel. The circuitry may generate a phase error signal based on the received time phase corrected Bluetooth signal, and generate a mean phase error signal based on the generated phase error signal. A signal to noise ratio (SNR) may be derived based on the generated mean phase error signal, and a data rate may be selected based on the derived SNR.