Abstract:
An adapter sleeve is described for inserting into an expansion chuck of a cutting device with a substantially cylindrical body that defines a longitudinal axis (L) of the adapter sleeve and a seat area for a cutting tool. The body comprises an axial front end and an axial rear end opposite the front end by means of which the adapter sleeve can be inserted into the expansion chuck of the cutting device. An outlet element is provided at the axial front end through which a coolant can be discharged toward the cutting tool. At least one cooling line extends along the body up to the outlet element and comprises a body line section and an outlet element section. At least one channel-like outlet nozzle is formed in the outlet element and is in fluidic connection with the at least one cooling line. The flow cross-section of the cooling line decreases or remains the same toward the axial front end. In addition, a cutting device is described.
Abstract:
The invention relates to a hydraulic tool mount having a bore into which a sealing piston is inserted, wherein the sealing piston comprises a pin, a seal and a head which are arranged one behind the other in an axial direction (A) and thus form a stack, wherein the seal comprises a circumferential sealing lip for abutment and sealing against an inner wall of the bore in order to achieve a first sealing effect, and the bore comprises a sealing seat which, when the sealing piston is inserted, forms a stop for the head in axial direction (A), so that, in an end position of the sealing piston, the head abuts the sealing seat and thereby closes the bore in order to achieve a second sealing effect. The invention further relates to a corresponding sealing piston.
Abstract:
Hydraulic expansion chuck with a basic body, with an expansion bush which is received in the basic body and defines a reception space for a tool to be clamped, and with a pressure chamber which is delimited between the expansion bush and the basic body. A securing pin extends through the basic body and the expansion bush into the reception space. Also broadly contemplated herein is a method for producing a hydraulic expansion chuck via: providing a basic body with a blind hole, into which an internal thread is cut. An expansion bush is then soldered into the basic body. Finally, an orifice is made at the bottom of the blind hole and extends through the material of the expansion bush into a tool reception space which is delimited in the expansion bush.
Abstract:
A hydraulic expansion chuck includes a basic body, an expansion bush which is received in the basic body and defines a reception space for a tool to be clamped, and a pressure chamber which is delimited between the expansion bush and the basic body. A securing pin is provided, which extends through the basic body and the expansion bush into the reception space. A method for producing a hydraulic expansion chuck is disclosed. First, a basic body is provided with a blind hole, into which an internal thread is cut. Then, an expansion bush is soldered into the basic body. Finally, an orifice is made at the bottom of the blind hole and extends through the material of the expansion bush into a tool reception space which is delimited in the expansion bush.
Abstract:
The invention relates to an expansion clamping sleeve (6) comprising a sleeve body (30) having a tool receptacle (24) for a chipping tool, wherein the sleeve body (30) is expanded in a longitudinal direction (10) as well as in a radial direction (20) transverse to the longitudinal direction (10), wherein the sleeve body (30) comprises a pressure membrane (44) delimiting a hydraulic chamber (40) in the sleeve body (30), and wherein the sleeve body (30) comprises a receptacle (46) for a mechanical actuator (48) for activating the pressure membrane (44). In addition, the invention relates to a hydraulic expansion clamping chuck (2) having such an expansion clamping sleeve (6).
Abstract:
The invention relates to a hydraulic tool mount having a bore into which a sealing piston is inserted, wherein the sealing piston comprises a pin, a seal and a head which are arranged one behind the other in an axial direction (A) and thus form a stack, wherein the seal comprises a circumferential sealing lip for abutment and sealing against an inner wall of the bore in order to achieve a first sealing effect, and the bore comprises a sealing seat which, when the sealing piston is inserted, forms a stop for the head in axial direction (A), so that, in an end position of the sealing piston, the head abuts the sealing seat and thereby closes the bore in order to achieve a second sealing effect. The invention further relates to a corresponding sealing piston.
Abstract:
An improved adapter sleeve is submitted which has a shank for insertion into a toolholder for a machine tool, wherein a tool socket for holding a tool is formed in the shank, wherein a number of slots are disposed along the shank so that the shank can be compressed during clamping, wherein a cutting head is formed which is arranged on a front side (F) of the shank. In one embodiment, the cutting head has an insert seat for a cutting insert.
Abstract:
Hydraulic expansion chuck with a basic body, with an expansion bush which is received in the basic body and defines a reception space for a tool to be clamped, and with a pressure chamber which is delimited between the expansion bush and the basic body. A securing pin which extends through the basic body and the expansion bush into the reception space. Also broadly contemplated herein is a method for producing a hydraulic expansion chuck via: providing a basic body with a blind hole, into which an internal thread is cut. An expansion bush is then soldered into the basic body. Finally, an orifice is made at the bottom of the blind hole and extends through the material of the expansion bush into a tool reception space which is delimited in the expansion bush.
Abstract:
A hydraulic expansion chuck includes a basic body, an expansion bush which is received in the basic body and defines a reception space for a tool to be clamped, and a pressure chamber which is delimited between the expansion bush and the basic body. A securing pin is provided, which extends through the basic body and the expansion bush into the reception space. A method for producing a hydraulic expansion chuck is disclosed. First, a basic body is provided with a blind hole, into which an internal thread is cut. Then, an expansion bush is soldered into the basic body. Finally, an orifice is made at the bottom of the blind hole and extends through the material of the expansion bush into a tool reception space which is delimited in the expansion bush.