摘要:
A mixture of uranium dioxide and additive of aluminosilicate composition is formed into a compact and sintered to produce a nuclear fuel wherein the uranium dioxide grains have an average grain size of at least about 20 microns and wherein substantially all of the grains are each enveloped by glassy aluminosilicate phase.
摘要:
An improved nuclear fuel element for service in power generating, water cooled nuclear reactors, comprising a fuel cladding container of an alloy of zirconium provided with a barrier lining of unalloyed zirconium metal metallurgically bonded to the container's inner surface, and enclosed therein fissionable nuclear fuel including an additive of aluminum silicate.
摘要:
A particulate mixture of uranium dioxide and additive of magnesium silicate composition is formed into a compact and sintered to produce a nuclear fuel wherein the uranium dioxide grains have an average grain size of at least about 20 microns and wherein substantially all of the grains are each enveloped with glassy magnesium silicate phase.
摘要:
A particulate mixture of uranium dioxide and additive of magnesium aluminosilicate composition is formed into a compact and sintered to produce a nuclear fuel wherein the uranium dioxide grains have an average grain size of at least about 20 microns and wherein substantially all of the grains are each enveloped with glassy magnesium aluminosilicate phase.
摘要:
A method is provided for preparing a cladding tube having an outer substrate, an intermediate zirconium barrier layer, and an inner liner. The method includes the following steps: (a) bonding an inner liner alloy sheath exterior circumferential surface to a zirconium sheath interior circumferential surface to form a barrier/inner liner sheath, and (b) bonding the exterior surface of the zirconium sheath on the barrier/inner liner sheath to the interior circumferential surface of an outer substrate alloy tube to form the cladding tube. Alternatively, the method includes the following steps: (a) bonding the zirconium sheath exterior circumferential surface to the outer substrate alloy tube interior circumferential surface to form a substrate tube/barrier sheath, and (b) bonding the exterior circumferential surface of the inner liner alloy sheath to the interior circumferential surface of the zirconium sheath of the substrate tube/barrier sheath to form said cladding tube. In either approach the tube produced by step (a) is heat treated before step (b) is performed. The bonding steps are performed by extrusion and sometimes hot isostatic pressing.
摘要:
Cladding for nuclear fuel elements which is formed with a zirconium metal barrier layer bonded to the inside surface of a zirconium alloy tube and which is sized by a cold working tube reduction process and is heat treated after final reduction at a temperature and for a time period which allows substantially complete recrystallization of the zirconium metal barrier layer and provides a fine-grained microstructure therein and which stress-relieves but does not fully recrystallize the zirconium alloy tube. The crystallographic structure of the zirconium metal barrier layer may be improved by compressive deformation such as shot-peening.
摘要:
The present invention provides a cladding having an outer circumferential substrate, a zirconium barrier layer metallurgically bonded to the inside surface of the substrate and an inner circumferential liner metallurgically bonded to the zirconium barrier. The inner circumferential liner is more ductile than conventional Zircaloy. The low ductility of the inner circumferential liner is obtained, for example, by using a zirconium alloy containing a low tin content (e.g. less than 1.2% by weight) and/or a low oxygen content (e.g. less than 1000 ppm). The inner circumferential liner is less than about 25 micrometers thick.
摘要:
The present invention provides a cladding having an outer circumferential substrate, a zirconium barrier layer metallurgically bonded to the inside surface of the substrate and an inner circumferential liner metallurgically bonded to the zirconium barrier. The inner circumferential liner is more ductile than conventional Zircaloy. The low ductility of the inner circumferential liner is obtained by using a zirconium alloy containing a low tin content (e.g. less than 1.2% by weight) and/or a low oxygen content (e.g. less than 1000 ppm). The inner circumferential liner is less than about 25 micrometers thick.
摘要:
An improved procedure for producing composite constructed nuclear fuel containers for service in water cooled nuclear fission reactors is disclosed. The improved production procedure maximizes the advantageous characteristics of the respective components of the composite unit. The procedure of the invention comprises heat treating the two components of a tube stock and liner stock separately prior to their assembly.
摘要:
A cladding tube having a cross-section and including (1) a zirconium alloy outer circumferential substrate having an inner surface and having one or more alloying elements, (2) a zirconium barrier layer bonded to the inner surface of the outer circumferential substrate and being alloyed with the one or more alloying elements, and (3) a zirconium alloy inner circumferential liner bonded to the inner surface of the zirconium barrier layer. The barrier layer will have a concentration profile including a diffusion layer extending from the barrier layer's inner surface (facing nuclear fuel) to the barrier layer's interior (between the barrier layer's inner and outer surfaces). At the interior edge of the diffusion layer, there will be substantially no alloying elements. At the outer edge of the diffusion layer (the barrier layer's inner surface), the maximum concentration of alloying elements will occur.