摘要:
Systems and methods for outputting instructions when a vehicle is not responding to a roll-angle alert. An example system includes one or more altitude sensors that determine one of altitude above ground level or barometric altitude, one or more roll-angle sensors that determine the roll-angle of the vehicle, and a processor. The processor receives the altitude and roll-angle information, determines if an excessive roll-angle condition exists based on the received altitude and roll-angle information, and generates a roll-angle alert signal if a roll-angle alert condition exists. The processor generates a roll-direction signal based upon vehicle position relative to the horizon and outputs the determined roll-direction signal via the one or more output devices, if one of the condition still exists after the time delay, the vehicle roll-angle has deteriorated away from the desired threshold, or the roll-angle rate is greater than a roll-angle rate threshold.
摘要:
Systems and methods for outputting instructions when a vehicle is not responding to a roll-angle alert. An example system includes one or more altitude sensors that determine one of altitude above ground level or barometric altitude, one or more roll-angle sensors that determine the roll-angle of the vehicle, and a processor. The processor receives the altitude and roll-angle information, determines if an excessive roll-angle condition exists based on the received altitude and roll-angle information, and generates a roll-angle alert signal if a roll-angle alert condition exists. The processor generates a roll-direction signal based upon vehicle position relative to the horizon and outputs the determined roll-direction signal via the one or more output devices, if one of the condition still exists after the time delay, the vehicle roll-angle has deteriorated away from the desired threshold, or the roll-angle rate is greater than a roll-angle rate threshold.
摘要:
A vehicle display system displays enhanced vision (EV) and captured images, for example synthetic vision (SV) images, to an operator of a vehicle. The display system includes an EV vision system for generating EV images, an SV database containing information regarding terrain and objects of interest for a travel path of a vehicle, an SV system for generating SV images based on travel of the vehicle and information from the SV database, a processor for filtering the EV images and merging the filtered EV image with the SV image, and a display for displaying the merged SV and filtered EV images.
摘要:
A vision system is provided for confirming continuously updated approach information from a global positioning system or an instrument landing system with that from an inertial navigation system. The approach information from the inertial navigation system is displayed when the global positioning system or the instrument landing system is unavailable or whose approach information is determined to be invalid.
摘要:
A flight deck display system and related operating methods for an aircraft are provided. The system includes a processor architecture and a display element coupled to the processor architecture. The processor architecture is configured to receive real-time aircraft data and terrain data for the aircraft and, based upon the real-time aircraft data and the terrain data, generate image rendering display commands. The display element receives the image rendering display commands and, in response thereto, renders a primary flight display that includes a conformal view of terrain corresponding to a flight deck viewpoint. The primary flight display also includes a conformal terrain avoidance guidance (TAG) element on the view of terrain. The TAG element includes visual indicia of a desired navigation path that is intended to avoid terrain that obstructs a current flight path of the aircraft.
摘要:
A display system for a vehicle includes a navigation database storing navigation data; a terrain sensor configured to gather terrain data; a processor adapted to receive the navigation data and the terrain data and operable to supply one or more image rendering display commands based upon the navigation data and the terrain data; and a display device. The display device is coupled to receive the image rendering display commands and operable, in response thereto, to render (i) a perspective view image representative of the terrain data and the navigation data and including terrain and (ii) at least one line on the perspective view image that extends at least partially across the terrain and represents at least one of a ground-referenced range to a fixed location on the terrain and a vehicle-referenced range from the vehicle to a fixed range away from the vehicle.
摘要:
An aircraft synthetic vision system (100) is provided for increasing data input to a pilot (109) during approach and landing flight operations, and includes a runway assistance landing system (114) and a plurality of databases (106, 108, 110, 112) which may include, for example, a terrain database (106), an obstacle database (112); and a validated runway database (110). The processor (104) detects the likelihood of an error in determining the altitude from at least one of the runway assistance landing system (114), the plurality of databases (106, 108, 110, 112), and identifies the error. The processor (104) further determines augmented coordinates, and a processor (104) generates symbology commands to a first display (116) for displaying a runway environment in response to data provided to the processor (104) from each of the runway assistance landing system (114), the plurality of databases (106, 108, 110, 112), and the processor (104).
摘要:
A display system for a vehicle includes a navigation database storing navigation data; a terrain sensor configured to gather terrain data; a processor adapted to receive the navigation data and the terrain data and operable to supply one or more image rendering display commands based upon the navigation data and the terrain data; and a display device. The display device is coupled to receive the image rendering display commands and operable, in response thereto, to render (i) a perspective view image representative of the terrain data and the navigation data and including terrain and (ii) at least one line on the perspective view image that extends at least partially across the terrain and represents at least one of a ground-referenced range to a fixed location on the terrain and a vehicle-referenced range from the vehicle to a fixed range away from the vehicle.
摘要:
An aircraft synthetic vision system (100) is provided for increasing data input to a pilot (109) during approach and landing flight operations, and includes a runway assistance landing system (114) and a plurality of databases (106, 108, 110, 112) which may include, for example, a terrain database (106), an obstacle database (112); and a validated runway database (110). The processor (104) detects the likelihood of an error in determining the altitude from at least one of the runway assistance landing system (114), the plurality of databases (106, 108, 110, 112), and identifies the error. The processor (104) further determines augmented coordinates, and a processor (104) generates symbology commands to a first display (116) for displaying a runway environment in response to data provided to the processor (104) from each of the runway assistance landing system (114), the plurality of databases (106, 108, 110, 112), and the processor (104).
摘要:
A method for displaying the direction of an external force relative to a craft is provided. The method comprises obtaining direction data for an external force, obtaining craft directional data, calculating the force's direction relative to the craft's direction, and displaying a graphical representation of the force's direction relative to the direction of the craft.