摘要:
A system and method to inspect a component is disclosed. The system to inspect a component may include an x-ray source to direct an x-ray beam through the component and an x-ray detector to detect the x-ray beam after passing through the component. A processor may be included to transform coordinates on an x-ray detection panel of the x-ray detector that detect any defects to a digital representation of locations on the component of any defects.
摘要:
A method, system and apparatus for processing a radiographic image of a scanned object is disclosed. A pixel offset correction is performed in integer format on the radiographic image using saturation arithmetic to produce an image in integer format with any negative corrected values clipped to a value of zero. The resulting pixels are converted to floating point format and the converted pixels are multiplied by a gain factor. Optionally the resulting pixels are recursively averaged with previous results. The resulting pixels are converted to integer format and the converted pixel values are clamped to a maximum value using saturation arithmetic. Non-functional pixel correction is performed in integer format and the resulting pixel values are clamped to a maximum value using saturation arithmetic. An optional processing path replaces the recursive average by a linear average. The resulting pixel values are optionally filtered to enhance features of interest. The resulting pixel value is mapped in integer format to a palette index to establish an output pixel intensity having one of many intensity levels. The optional processing is controlled through the hardware interface of a real-time image controller as images are acquired.
摘要:
A method, system and apparatus for processing a radiographic image of a scanned object is disclosed. A pixel offset correction is performed in integer format on the radiographic image using saturation arithmetic to produce an image in integer format with any negative corrected values clipped to a value of zero. The resulting pixels are converted to floating point format and the converted pixels are multiplied by a gain factor. Optionally the resulting pixels are recursively averaged with previous results. The resulting pixels are converted to integer format and the converted pixel values are clamped to a maximum value using saturation arithmetic. Non-functional pixel correction is performed in integer format and the resulting pixel values are clamped to a maximum value using saturation arithmetic. An optional processing path replaces the recursive average by a linear average. The resulting pixel values are optionally filtered to enhance features of interest. The resulting pixel value is mapped in integer format to a palette index to establish an output pixel intensity having one of many intensity levels. The optional processing is controlled through the hardware interface of a real-time image controller as images are acquired.