摘要:
A method, system and apparatus for processing a radiographic image of a scanned object is disclosed. A pixel offset correction is performed in integer format on the radiographic image using saturation arithmetic to produce an image in integer format with any negative corrected values clipped to a value of zero. The resulting pixels are converted to floating point format and the converted pixels are multiplied by a gain factor. Optionally the resulting pixels are recursively averaged with previous results. The resulting pixels are converted to integer format and the converted pixel values are clamped to a maximum value using saturation arithmetic. Non-functional pixel correction is performed in integer format and the resulting pixel values are clamped to a maximum value using saturation arithmetic. An optional processing path replaces the recursive average by a linear average. The resulting pixel values are optionally filtered to enhance features of interest. The resulting pixel value is mapped in integer format to a palette index to establish an output pixel intensity having one of many intensity levels. The optional processing is controlled through the hardware interface of a real-time image controller as images are acquired.
摘要:
A method, system and apparatus for processing a radiographic image of a scanned object is disclosed. A pixel offset correction is performed in integer format on the radiographic image using saturation arithmetic to produce an image in integer format with any negative corrected values clipped to a value of zero. The resulting pixels are converted to floating point format and the converted pixels are multiplied by a gain factor. Optionally the resulting pixels are recursively averaged with previous results. The resulting pixels are converted to integer format and the converted pixel values are clamped to a maximum value using saturation arithmetic. Non-functional pixel correction is performed in integer format and the resulting pixel values are clamped to a maximum value using saturation arithmetic. An optional processing path replaces the recursive average by a linear average. The resulting pixel values are optionally filtered to enhance features of interest. The resulting pixel value is mapped in integer format to a palette index to establish an output pixel intensity having one of many intensity levels. The optional processing is controlled through the hardware interface of a real-time image controller as images are acquired.
摘要:
A digital radiography imaging system for acquiring digital images of an object, and a method for transforming digital images into an absolute thickness map characterizing the object under inspection. The system includes a radiation source for directing radiation through a desired region of the object, and a radiation detector having a plurality of sensing elements for detecting radiation passing through the object. Numerical data generated from each sensing element is calibrated, for example by correcting for variations in radiation paths between the source and detector, by correcting for variations in the spatial frequency response (MTF) of the detector, by correcting for variations in the geometric profile of the object under inspection, and by correcting for material contained in and/or around the object. The calibrated data is processed in order to generate and display an absolute thickness map of the object. The calibration procedures are adapted for extracting a thickness map from both isotope sources and X-ray tube sources.