摘要:
Approaches for adjusting the pacing energy delivered by a pacemaker are provided. Adjusting the pacing energy involves performing a plurality of capture threshold tests, each capture threshold test measuring a capture threshold of the heart. One or more measured captured thresholds are selected, including at least one capture threshold that is higher relative to other measured capture thresholds acquired by the plurality of capture threshold tests. The pacing energy is adjusted based on the one or more selected capture thresholds.
摘要:
Cardiac devices and methods provide adaptation of detection windows used to determine a cardiac response to pacing. Adapting a detection window involves sensing a cardiac signal indicative of a particular type of cardiac pacing response, and detecting a feature of the sensed cardiac signal. The cardiac response detection window associated with the type of cardiac pacing response is preferentially adjusted based on the location of the detected cardiac feature. Preferential adjustment of the detection window may involve determining a direction of change between the detection window and the detected feature. The detection window may be adapted more aggressively in a more preferred direction and less aggressively in a less preferred direction.
摘要:
Methods and systems for detecting noise in cardiac pacing response classification processes involve determining that a cardiac response classification is possibly erroneous if unexpected signal content is detected. The unexpected signal content may comprise signal peaks that have polarity opposite to the polarity of peaks used to determine the cardiac response to pacing. Fusion/noise management processes include pacing at a relatively high energy level until capture is detected after a fusion, indeterminate or possibly erroneous pacing response classification is made. The relatively high energy pacing pulses may be delivered until capture is detected or until a predetermined number of paces are delivered.
摘要:
Noncaptured atrial paces can result in long-short cardiac cycles which are proarrhythmic for ventricular tachyarrhythmia. Approaches are described which are directed to avoiding proarrhythmic long-short cycles. For cardiac cycles in which the atrial pace captures the atrium, a first post ventricular refractory period (PVARP) and a first A-A interval are used. For cardiac cycles in which the atrial pace does not capture the atrium, both an extended PVARP and an extended A-A interval are used. The A-A interval following a noncaptured atrial pace is extended from an atrial depolarization sensed during the extended PVARP.