摘要:
An ability to compress packets is announced from a customer edge router (CE) to other CEs through a routing protocol packet. An announcement of that ability is received from another CE through a routing protocol packet. A compression technique is then matched. The CE receives compression information from the other CE in a routing protocol packet, and determines that a compression technique identified therein matches any compression technique the CE is programmed to use. The CE then flags packets transmitted from/received by the CE to be compressed/decompressed according to the matched compression technique. Alternatively, the CE may match by transmitting compression information identifying a compression technique to the another CE in a routing protocol packet; the another CE receives the routing protocol packet and determines that a compression technique identified in the compression information of the routing protocol packet matches any compression technique the another CE is programmed to use.
摘要:
An ability to compress packets is announced from a customer edge router (CE) to other CEs through a routing protocol packet. An announcement of that ability is received from another CE through a routing protocol packet. A compression technique is then matched. The CE receives compression information from the other CE in a routing protocol packet, and determines that a compression technique identified therein matches any compression technique the CE is programmed to use. The CE then flags packets transmitted from/received by the CE to be compressed/decompressed according to the matched compression technique. Alternatively, the CE may match by transmitting compression information identifying a compression technique to the another CE in a routing protocol packet; the another CE receives the routing protocol packet and determines that a compression technique identified in the compression information of the routing protocol packet matches any compression technique the another CE is programmed to use.
摘要:
In one embodiment, a method includes receiving information on layer 2 topologies at a network device in a core network, mapping one or more Virtual Local Area Networks (VLANs) to the layer 2 topologies to provide differentiated services in said layer 2 topologies, defining multiple paths for each of the layer 2 topologies, and forwarding a packet received at the network device on one of the multiple paths. An apparatus and logic for providing differentiated services in layer 2 topologies is also disclosed.
摘要:
In one embodiment, a method includes receiving information on layer 2 topologies at a network device in a core network, mapping one or more Virtual Local Area Networks (VLANs) to the layer 2 topologies to provide differentiated services in said layer 2 topologies, defining multiple paths for each of the layer 2 topologies, and forwarding a packet received at the network device on one of the multiple paths. An apparatus for providing differentiated services in layer 2 topologies is also disclosed.
摘要:
The present invention elects an area border router from a plurality of potential area border routers by determining a full set of all areas attached to a router. A determination is made as to a full set of area pairs from the determined full set of areas. Routers are identified in a first area of the determined full set of areas that are reachable through an intra-area route in the first area, and routers are identified in a second area of the determined full set of areas that are reachable through an intra-area route in the second area. If there is a router that is unreachable through either an intra-area route in the first area or an intra-area route in the second area, then declare the first router to be an area border router, else new first and second areas are selected.
摘要:
A data processing apparatus comprises instructions to perform sending and receiving one or more messages conforming to a network routing protocol, such as Open Shortest Path First (OSPF); obtaining one or more information elements that specify one or more capabilities of the apparatus; creating a particular routing protocol message comprising an opaque advertisement that includes the one or more information elements; and sending the particular message on one of the network interfaces. For example, a router or switch that implements a network routing protocol can use OSPF Opaque Link State Advertisements to advertise and discover services and capabilities of other routers or switches.
摘要:
In one embodiment, a method includes obtaining an indication that a state associated with a node is to be changed and preventing data from being received on a first link. The method also includes updating at least one selected from a group including an incoming interface check (IIC) table and an outgoing interface (OIF) table to reflect the state. The state indicates that a second link is to be activated. Finally, the method includes allowing the data to be received on the second link after updating either or both the IIC table and the OIF table and after the timer duration for the NULL value for IIC has expired.
摘要:
A system for providing a tree topology for a network having an interior gateway protocol. A first router receives a hello message from all connected routers in the network. The hello messages include tree topology information. The first router then uses the tree topology information to determine a parent of the router. The first router then establishes connections with directly connected routers at the same level in the tree topology. The first router also generates link messages that include all of the prefixes for children of the first router and broadcasts the link messages.
摘要:
In one example embodiment, a system and method are shown that includes calculating a first SPF tree for a first device, the first SPF tree including a root node and a first child node, the first device being the root node of the first SPF tree. Additionally, the system and method may include calculating a second SPF tree for a second device that is a neighbor of the first device, the second SPF tree including a root node and a first child node, the second device being the root node of the second SPF tree. Further, the system and method may include building a set of interested nodes including the second device, if the first child node if the first SPF tree and the first child node of the second SPF tree are distinct.
摘要:
A method and apparatus are presented supporting shortest path first (SPF) routing of data packets over a network by establishing link-state data at an router. Link-state data indicates direct links between the router and a different router and establishes an adjacency relationship with the different node. Initial link-state data is stored at a first router. After the initial link-state data is stored, a hello message is received at the first router. The hello message indicates a direct connection with a different second router on one network segment. Based on the initial link-state data, it is determined whether establishing an adjacency relationship with the second router is sufficiently valuable. If not, then an adjacency relationship is not established with the second router in response to the hello message. A shortest path first routing for a data packet traversing the network is determined based on one or more adjacency relationships indicated in link-state data stored at the first router.