摘要:
A deposition source is provided which is installed in a chamber, heated by applied electric power to transfer heat to a vapor deposition material received therein and applying a vaporized deposition material generated therein to a substrate to form deposition organic electroluminescent layers onto the substrate. The deposition source includes a vessel formed of a top plate on which a vapor efflux aperture is formed, a side wall, and a bottom wall; a heating device that supplies heat to the deposition material received in the vessel, the heating device being capable of moving vertically; and a moving device that moves the heating device (or the bottom wall), the moving device (or the bottom wall) being operated in response to the signal of a sensing device on varied distances between the heating device and the surface of said deposition material. Thus, the heating device is moved downward (or the bottom wall) is moved upward by the moving device to maintain the distance between the heating device (or the substrate to be coated) and the surface of the deposition material at an initially-set value when the thickness of the deposition material is decreased.
摘要:
An electroluminescent device may be provided that includes a substrate, a first electrode provided on the substrate, a light emitting layer provided on the first electrode, and a first metal layer provided on the light emitting layer. An oxide layer may also be provided at an interface of the first metal layer and a conductive particle. Other embodiments as described herein may also be provided.
摘要:
An electroluminescent device may be provided that includes a substrate, a first electrode provided on the substrate, a light emitting layer provided on the first electrode, and a first metal layer provided on the light emitting layer. An oxide layer may also be provided at an interface of the first metal layer and a conductive particle. Other embodiments as described herein may also be provided.
摘要:
An OLED device adapted to enhance reliability and light-emitting efficiency is disclosed. The disclosed OLED device includes: a first electrode; an emission layer formed on the first electrode; a second electrode formed on the emission layer; and an electron injection layer disposed on the emission layer, configure to be in contact with the second electrode and in a single layer which is formed from a mixture of an inorganic compound and a metal material with a low work function.
摘要:
The present invention relates to a light emitting device where currents passing through scan lines have the same values. The light emitting device includes data lines, scan lines, pixels, one or more dummy data line and a cross-talk preventing circuit. The data lines are disposed in a first direction, and the scan lines are disposed in a second direction. The pixels are formed in cross areas of the data lines and the scan lines. The dummy data line is disposed in the first direction. The cross-talk preventing circuit provides a compensating current to scan line related to luminescence of the scan lines through the dummy data line so that total sum of current passing through the scan line has a desired value. In the light emitting device, currents passing through scan lines have the same values, and so a cross-talk phenomenon is not occurred to a panel.