摘要:
Exemplary methods and systems provide a relational directory of organizational information. Organizational data objects and their associated attributes are maintained in a relational directory. An organizational hierarchy is converted to a relational directory using projection, joining, and import attribute flow rules. Attributes in a relational directory may be exported out of the relational directory to a hierarchical directory.
摘要:
Systems and methods for populating attribute value fields in an entity object employ in a ranked list of transfer options to determine which of a plurality of transfer options will be used to populate the attribute value fields in the entity object.
摘要:
The described arrangements and procedures provide a directory schema with object classes that have flexible attributes. This means that attributes can be extended independent of modifications to the directory schema. Specifically, an object instance of a content class described in the directory schema is instantiated. The content class includes a flexible attribute having a data type. A property is assigned to the attribute. The property is any combination of an operational and data providing property. The property is independent of the attribute's data type. Thus, without modifying the directory schema, multiple instances of the same object class can have attributes that provide completely different data types and completely different data operations.
摘要:
Exemplary methods, devices, systems, and/or storage media for organizational data management, including staging, synchronizing, and exporting of organizational data. Exemplary data aggregation rules specify methods for aggregating data from a remote repository. Schemas are exemplary rules configuration data structures having elements for associating processing data objects in a buffer space objects in a core space. The elements may also specify importing attributes into and exporting attributes from the core space.
摘要:
Systems and methods for extending a directory schema independent of schema modification are described. In one aspect, a directory schema data structure includes a flexible attribute data field. The flexible attribute data field identifies a complex data type. The complex data type is used to express one or more operational or data providing properties of a flexible attribute. The one or more operational or data providing properties are independent of the complex data type and independent of directory schema modification. The directory schema data structure also includes a flexible structural object content class to encapsulate the flexible attribute.
摘要:
Systems and methods for extending a directory schema independent of schema modification are described. In one aspect, a directory schema data structure includes a flexible attribute data field. The flexible attribute data field identifies a complex data type. The complex data type is used to express one or more operational or data providing properties of a flexible attribute. The one or more operational or data providing properties are independent of the complex data type and independent of directory schema modification. The directory schema data structure also includes a flexible structural object content class to encapsulate the flexible attribute.
摘要:
The described arrangements and procedures use a directory, with its integrated view of resource identity across a distributed system to dynamically execute and manage workflow solutions responsive to changes in the directory. Specifically, a state change to an object in a directory is detected. Responsive to detecting the state change, the state change is mapped to a corresponding workflow, which includes sequences of tasks. The identified sequences of tasks are then executed to achieve a desired state in the directory. The desired state is based on the detected state change.
摘要:
Systems and methods for dynamically generating a schema representing multiple hierarchies of inter-object relationships are described. In one aspect, a polyarchical query language data structure includes first, second, and third data fields. The first data field is used to specify a particular schema for presenting or managing a plurality of objects in a data polyarchy based on values of attributes in the objects. The second data field is to indicate an attribute of interest. The third data field indicates how one or more objects that include the attribute of interest are to be presented or managed with respect to one or more participating dimensions of inter-object relationships based on the schema.
摘要:
Dynamically generating a schema representing multiple hierarchies of inter-object relationships is described. In one aspect, a data polyarchy is created. Responsive to creation of the data polyarchy, a schema is automatically generated to represent multiple hierarchies of inter-object relationships between multiple objects in the data polyarchy. The schema is generated based on values of attributes of the objects.
摘要:
Systems and methods for dynamically generating a schema representing multiple hierarchies of inter-object relationships are described. In one aspect, a polyarchical query language data structure includes first, second, and third data fields. The first data field is used to specify a particular schema for presenting or managing a plurality of objects in a data polyarchy based on values of attributes in the objects. The second data field is to indicate an attribute of interest. The third data field indicates how one or more objects that include the attribute of interest are to be presented or managed with respect to one or more participating dimensions of inter-object relationships based on the schema.