摘要:
An image sensing apparatus includes: an image sensing section for sensing an image of a subject; a detector for detecting a luminance of the subject; a compressor for compressing a dynamic range of the subject image; and a controller for controlling a compression characteristic to be used in compressing the dynamic range based on a detection result of the detector.
摘要:
In an image processing device, an image processing method, and an image pickup apparatus according to an aspect of the invention, a compression characteristic is generated based on one of multiple smoothed images to be generated based on an input image, and a compressed base component image having a smaller dynamic range than the dynamic range of a base component image is generated by using the compression characteristic. The image processing device, the image processing method, and the image pickup apparatus enable to more advantageously define a proper compression characteristic, and compress the dynamic range of the input image in a simplified manner and with high quality, as compared with the background art.
摘要:
To convert a pixel value obtained from a non-reference photoelectric conversion characteristic into a pixel value obtained from a reference photoelectric conversion characteristic without variation, and to prevent generation of fixed pattern noise in an image. An image sensor 3 is constituted of pixels having photoelectric conversion characteristics, in which a linear characteristic is on the low luminance side with respect to an inflection point, and a logarithmic characteristic is on the high luminance side with respect to the inflection point. A conversion information storage 68 stores, as conversion information, coefficients “c”, “d”, “e”, and “f” of two kinds of linear functions (y=c·log(x)+d, and y=e·log(x)+f), which are approximation equations expressing the logarithmic characteristic of each of the pixels, where y designates a pixel value, and x designates a luminance value of incident light. A linear converter 64 converts a pixel value obtained from the logarithmic characteristic into a pixel value obtained from the linear characteristic by using the approximation equations specified by the coefficients.
摘要:
An inflection point variation correction unit 641 executes a predetermined characteristic conversion processing on pixel data read by each pixel, so as to unify the photoelectric conversion characteristic of each pixel data into a linear characteristic. When the flexure start level S1 of a target pixel is smaller than an inflection point threshold Sth, and when, at the same time, a pixel value d of the pixel data read by the target pixel is smaller than a predetermined pixel threshold Dth, then an inflection point interpolation unit 642 outputs not the pixel value d′ obtained in the above mentioned characteristic conversion processing, but a pixel value d″ obtained in an interpolation processing using a pixel data read by a neighbor pixel located near the target pixel, thereby the photoelectric conversion characteristic of the pixel data read by the target pixel is converted into the linear characteristic.
摘要:
An image sensing apparatus includes: an image sensing section for sensing an image of a subject; a detector for detecting a luminance of the subject; a compressor for compressing a dynamic range of the subject image; and a controller for controlling a compression characteristic to be used in compressing the dynamic range based on a detection result of the detector.
摘要:
An image sensing apparatus includes: an image sensing device for sensing light representing a subject image; a first component extractor for extracting a first component having a predetermined frequency out of a photographic image obtained by the image sensing device; a second component extractor for extracting a second component having a frequency higher than the frequency of the first component out of the photographic image; a compressor for compressing a dynamic range of the first component extracted by the first component extractor with a predetermined compression ratio; an image generator for generating an image based on a compressed first component obtained by compressing the dynamic range of the first component by the compressor, and the second component extracted by the second component extractor; and a compression correction coefficient calculator for calculating a compression correction coefficient used in compressing the first component, using the second component extracted by the second component extractor, wherein the compressor determines the compression ratio in such a manner that the larger compression correction coefficient increases the compression ratio based on the compression correction coefficient calculated by the compression correction coefficient calculator, and compresses the dynamic range of the first component based on the determined compression ratio.
摘要:
An image sensing apparatus includes: an image sensing section for sensing an image of a subject; a detector for detecting a luminance of the subject; a compressor for compressing a dynamic range of the subject image; and a controller for controlling a compression characteristic to be used in compressing the dynamic range based on a detection result of the detector.
摘要:
An imaging device is provided with an imaging element. The imaging element has a sensitive wavelength region including an infrared wavelength region, and selectively including a visible wavelength region, and is composed of at least three types of pixels having spectral sensitivities different from each other. The imaging device generates a color image, based on a luminance signal including an infrared wavelength component, and based on a color-difference signal that has been generated based on a visible wavelength component in original image data. The luminance signal including an infrared wavelength component is generated, based on a signal obtained by compressing the dynamic range of original image data including at least three types of original image components acquired by an imaging operation of the imaging element.
摘要:
An imaging device is provided with an imaging element. The imaging element has a sensitive wavelength region including an infrared wavelength region, and selectively including a visible wavelength region, and is composed of at least three types of pixels having spectral sensitivities different from each other. The imaging device generates a luminance signal including an infrared wavelength component, a color-difference signal including a visible wavelength component, and a visible luminance signal as a luminance signal in the visible wavelength region, from original image data including at least three types of original image components obtained by an imaging operation by the imaging element; and generates a color image based on a low frequency component in the luminance signal and in the color-difference signal, and based on a low frequency component in the visible luminance signal.
摘要:
An image sensing apparatus includes: an image sensing device for sensing light representing a subject image; a first component extractor for extracting a first component having a predetermined frequency out of a photographic image obtained by the image sensing device; a second component extractor for extracting a second component having a frequency higher than the frequency of the first component out of the photographic image; a compressor for compressing a dynamic range of the first component extracted by the first component extractor with a predetermined compression ratio; an image generator for generating an image based on a compressed first component obtained by compressing the dynamic range of the first component by the compressor, and the second component extracted by the second component extractor; and a compression correction coefficient calculator for calculating a compression correction coefficient used in compressing the first component, using the second component extracted by the second component extractor, wherein the compressor determines the compression ratio in such a manner that the larger compression correction coefficient increases the compression ratio based on the compression correction coefficient calculated by the compression correction coefficient calculator, and compresses the dynamic range of the first component based on the determined compression ratio.