Abstract:
A spectroscopic unit and spectroscopic device according to the present invention are provided with a filter that is provided with a plurality of optical filter elements disposed in order from the entrance side to the exit side of light under measurement and has different transmission wavelengths corresponding to entrance positions along a first direction. A first optical filter element from among the plurality of optical filter elements is tilted with respect to a second optical filter element disposed adjacently to the first optical filter element as a result of the first optical filter element being rotated by a prescribed angle with a third direction that is perpendicular to both the first direction and s second direction from the entrance side to the exit side as the axis of rotation thereof or being rotated by a prescribed angle with the first direction as the axis of rotation thereof.
Abstract:
The photometric apparatus includes a light receiver having one or a plurality of light receiving sensors that receive light to be measured from an object to be measured; a controller that calculates a measured value based on an output from the one or plurality of light receiving sensors; a light attenuation member that is disposed so as to be insertable in and removable from a light path of the light to be measured and attenuates the light to be incident on the light receiver; and a corrector that corrects a difference between a measured value calculated by the controller in a state in which the light attenuation member is inserted in the light path and a measured value calculated by the controller in a state in which the light attenuation member is not inserted in the light path, the measured values varying depending on a characteristic of the object.
Abstract:
A spectrometer includes: a diffraction means that diffracts light being measured which has entered via an entrance unit; a main sensor that receives the light being measured which has been diffracted by the diffraction means; at least one auxiliary sensor disposed in an optical path of a luminous flux that does not reach the main sensor among luminous fluxes that have entered via the entrance unit, the auxiliary sensor receiving the luminous flux; and a correction means that corrects an output value of the main sensor on the basis of an output value of the auxiliary sensor.
Abstract:
A reflection property measuring device comprising illumination light and reflected light polarizing plates held by a holder in a mutually superposed state in a thickness direction thereof, wherein the holder has a fittingly-holding portion for setting a held posture, and each of the polarizing plates has a fitting portion fittable to the fittingly-holding portion. The fitting portions of the polarizing plates are provided at positions allowing the polarizing plates to be held by the holder in respective postures where polarizing directions thereof intersect orthogonally. A manufacturing method is disclosed for polarizing plates used in the device, wherein the illumination light and reflected light polarizing plates are manufactured in such a manner as to be punched out from the same polarizing plate material.
Abstract:
A photometric apparatus includes: a splitting optical system that splits light to be measured from an object to be measured into a plurality of light rays; a colorimetric optical system having a wavelength-selective filter on which the light that is to be measured and has been split by the splitting optical system is incident, and a light receiving sensor that receives the light that is to be measured and has been transmitted through the wavelength-selective filter; and a light attenuation member that is insertable in and removable from a light path of the light to be measured, in which the light attenuation member is disposed in front of the splitting optical system.
Abstract:
A spectrophotometer having a light-receiving optical system that images light to be measured from a position for measurement and generates imaged light to be measured; a slit formation including a slit that causes the imaged light to be measured to pass and that generates light to be measured, which travels along a measurement optical path; a grating that diffracts the light to be measured, which travels along the measurement optical path, and generates diffracted light; a sensor that receives the diffracted light and outputs a signal representing a spectral spectrum; and an observation light source that is disposed on an optical path of zeroth light among the diffracted light and that emits observation light toward the grating at a time of observing the position for measurement.
Abstract:
Observation light can be applied to a position for measurement without providing large space in a spectrophotometer, and the position for measurement can be easily known. A slit is disposed at a position optically conjugate with the position for measurement in the spectrophotometer. Light from an object to be measured passes through the slit, travels along a measurement optical path, and is subject to wavelength dispersion by a wavelength dispersing element. An observation light source is retracted outside the measurement optical path at the time of measuring a spectral spectrum. At the time of observing the position for measurement, the observation light source is inserted into the measurement optical path, and emits observation light toward the slit. Alternatively, light from an object to be measured passes through the slit, and is diffracted by a grating. The observation light source is disposed on an optical path of zeroth light. The observation light source emits observation light toward the grating at the time of observing the position for measurement.