摘要:
A piston engine intakes, at the compression stage, lean gas-air mixture from a cylinder to the ignition chamber. The residual gases are at 500° C. to 700° C., and are composed of: carbon dioxide 6.7% to 5.6%, oxygen 6.6% to 8.8%, water vapor 12.8% to 19.8% with the air excess factor 1.5 to 1.8, are preserved in the ignition chamber and are used for initiating, at the contact, and mixing with the gas-air mixture, the reactions of combined conversion of the lowermost alkanes (methane, ethane, propane, butane, etc.), into hydrogen and carbon monoxide; intensifying reactions of combined conversion in the compression cycle, by increasing pressure and, therefore, temperature of the gas-air mixture in the cylinder and in the ignition chamber, up to 5-5.5 MPa and 500-600° C., at the moment of the spark. The ignition chamber can be made of catalytic material, e.g., nickel heat-resistant steel.
摘要:
A piston engine intakes, at the compression stage, lean gas-air mixture from a cylinder to the ignition chamber. The residual gases are at 500° C. to 700° C., and are composed of: carbon dioxide 6.7% to 5.6%, oxygen 6.6% to 8.8%, water vapor 12.8% to 19.8% with the air excess factor 1.5 to 1.8, are preserved in the ignition chamber and are used for initiating, at the contact, and mixing with the gas-air mixture, the reactions of combined conversion of the lowermost alkanes (methane, ethane, propane, butane, etc.), into hydrogen and carbon monoxide; intensifying reactions of combined conversion in the compression cycle, by increasing pressure and, therefore, temperature of the gas-air mixture in the cylinder and in the ignition chamber, up to 5-5.5 MPa and 500-600° C., at the moment of the spark. The ignition chamber can be made of catalytic material, e.g., nickel heat-resistant steel.