摘要:
A zirconium alloy for use in nuclear fuel assemblies is provided, which provides increased resistance against oxidation and corrosion and also improved bonding with parent material, because pure metallic material such as silicon (Si) or chromium (Cr) is evenly coated on the surface of the parent material by plasma spraying. Because the plasma spray coating used to coat the pure metallic material on the zirconium alloy does not require vacuum equipment and also is not limited due to the shape of the coated product, this is particularly useful when evenly treating the surface of the component such as 4 m-long tube or spacer grip arrangement which is very complicated in shape. Furthermore, because the coated zirconium alloy confers excellent resistance to oxidation and corrosion under emergency such as accident as well as normal service condition, both the economic and safety aspects of nuclear fuel are improved.
摘要:
Disclosed are a zirconium alloy for a nuclear fuel cladding having a good corrosion resistance by reducing an amount of alloying elements and a method of preparing a zirconium alloy nuclear fuel cladding using thereof. The zirconium alloy includes 0.2 to 0.5 wt % of niobium (Nb); 0.2 to 0.6 wt % of iron (Fe); 0.3 to 0.5 wt % of chromium (Cr); 0.1 to 0.15 wt % of oxygen (O); 0.008 to 0.012 wt % of silicon (Si) and a remaining amount of zirconium (Zr). The total amount of the niobium, the iron and the chromium is 1.1 to 1.2 wt %. A good oxidation resistance of the nuclear fuel cladding may be confirmed under accident conditions as well as normal operating conditions of a reactor, thereby improving economic feasibility and safety.
摘要:
Disclosed are a zirconium alloy for a nuclear fuel cladding having a good corrosion resistance by reducing an amount of alloying elements and a method of preparing a zirconium alloy nuclear fuel cladding using thereof. The zirconium alloy includes 0.2 to 0.5 wt % of niobium (Nb); 0.2 to 0.6 wt % of iron (Fe); 0.3 to 0.5 wt % of chromium (Cr); 0.1 to 0.15 wt % of oxygen (O); 0.008 to 0.012 wt % of silicon (Si) and a remaining amount of zirconium (Zr). The total amount of the niobium, the iron and the chromium is 1.1 to 1.2 wt %. A good oxidation resistance of the nuclear fuel cladding may be confirmed under accident conditions as well as normal operating conditions of a reactor, thereby improving economic feasibility and safety.
摘要:
Disclosed are a zirconium alloy for a nuclear fuel cladding having a good oxidation resistance in reactor accident conditions, a zirconium alloy nuclear fuel cladding prepared by using thereof and a method of preparing the same. The zirconium alloy includes 1.0 to 1.2 wt % of niobium (Nb); at least one element selected from tin (Sn), iron (Fe) and chromium (Cr); 0.02 to 0.1 wt % of copper (Cu); 0.1 to 0.15 wt % of oxygen (O); 0.008 to 0.012 wt % of silicon (Si) and a remaining amount of zirconium (Zr). The amount of Sn is 0.1 to 0.3 wt %, the amount of Fe is 0.3 to 0.8 wt %, and the amount of Cr is 0.1 to 0.3 wt %. A good oxidation resistance of the nuclear fuel cladding may be confirmed under accident conditions as well as normal operating conditions of a reactor, thereby improving economic efficiency and safety.
摘要:
The present disclosure relates to a chromium-aluminum binary alloy with excellent corrosion resistance and a method of producing the same, and more particularly to a chromium-aluminum binary alloy with excellent corrosion resistance. The chromium-aluminum binary alloy may be easily produced and has ductility, thus being highly applicable as a coating material for a material requiring high-temperature corrosion resistance and wear resistance.
摘要:
Disclosed are a zirconium alloy for a nuclear fuel cladding having a good oxidation resistance in a severe reactor operation condition and a method of preparing zirconium alloy nuclear fuel claddings by using thereof. The zirconium alloy includes 1.8 to 2.0 wt % of niobium (Nb); at least one element selected from iron (Fe), chromium (Cr) and copper (Cu); 0.1 to 0.15 wt % of oxygen (O); 0.008 to 0.012 wt % of silicon (Si) and a remaining amount of zirconium (Zr). The amount of Fe is 0.1 to 0.4 wt %, the amount of Cr is 0.05 to 0.2 wt %, and the amount of Cu is 0.03 to 0.2 wt %. A good oxidation resistance of the nuclear fuel cladding may be confirmed under a severe reactor operation condition at an accident condition as well as a normal operating condition of a reactor, thereby improving economic efficiency and safety.
摘要:
A zirconium alloy for use in nuclear fuel assemblies is provided, which provides increased resistance against oxidation and corrosion and also improved bonding with parent material, because pure metallic material such as silicon (Si) or chromium (Cr) is evenly coated on the surface of the parent material by plasma spraying. Because the plasma spray coating used to coat the pure metallic material on the zirconium alloy does not require vacuum equipment and also is not limited due to the shape of the coated product, this is particularly useful when evenly treating the surface of the component such as 4 m-long tube or spacer grip arrangement which is very complicated in shape. Furthermore, because the coated zirconium alloy confers excellent resistance to oxidation and corrosion under emergency such as accident as well as normal service condition, both the economic and safety aspects of nuclear fuel are improved.