摘要:
A zirconium alloy for use in nuclear fuel assemblies is provided, which provides increased resistance against oxidation and corrosion and also improved bonding with parent material, because pure metallic material such as silicon (Si) or chromium (Cr) is evenly coated on the surface of the parent material by plasma spraying. Because the plasma spray coating used to coat the pure metallic material on the zirconium alloy does not require vacuum equipment and also is not limited due to the shape of the coated product, this is particularly useful when evenly treating the surface of the component such as 4 m-long tube or spacer grip arrangement which is very complicated in shape. Furthermore, because the coated zirconium alloy confers excellent resistance to oxidation and corrosion under emergency such as accident as well as normal service condition, both the economic and safety aspects of nuclear fuel are improved.
摘要:
Disclosed are a zirconium alloy for a nuclear fuel cladding having a good corrosion resistance by reducing an amount of alloying elements and a method of preparing a zirconium alloy nuclear fuel cladding using thereof. The zirconium alloy includes 0.2 to 0.5 wt % of niobium (Nb); 0.2 to 0.6 wt % of iron (Fe); 0.3 to 0.5 wt % of chromium (Cr); 0.1 to 0.15 wt % of oxygen (O); 0.008 to 0.012 wt % of silicon (Si) and a remaining amount of zirconium (Zr). The total amount of the niobium, the iron and the chromium is 1.1 to 1.2 wt %. A good oxidation resistance of the nuclear fuel cladding may be confirmed under accident conditions as well as normal operating conditions of a reactor, thereby improving economic feasibility and safety.
摘要:
Disclosed are a zirconium alloy for a nuclear fuel cladding having a good oxidation resistance in a severe reactor operation condition and a method of preparing zirconium alloy nuclear fuel claddings by using thereof. The zirconium alloy includes 1.8 to 2.0 wt % of niobium (Nb); at least one element selected from iron (Fe), chromium (Cr) and copper (Cu); 0.1 to 0.15 wt % of oxygen (O); 0.008 to 0.012 wt % of silicon (Si) and a remaining amount of zirconium (Zr). The amount of Fe is 0.1 to 0.4 wt %, the amount of Cr is 0.05 to 0.2 wt %, and the amount of Cu is 0.03 to 0.2 wt %. A good oxidation resistance of the nuclear fuel cladding may be confirmed under a severe reactor operation condition at an accident condition as well as a normal operating condition of a reactor, thereby improving economic efficiency and safety.
摘要:
A zirconium alloy for use in nuclear fuel assemblies is provided, which provides increased resistance against oxidation and corrosion and also improved bonding with parent material, because pure metallic material such as silicon (Si) or chromium (Cr) is evenly coated on the surface of the parent material by plasma spraying. Because the plasma spray coating used to coat the pure metallic material on the zirconium alloy does not require vacuum equipment and also is not limited due to the shape of the coated product, this is particularly useful when evenly treating the surface of the component such as 4 m-long tube or spacer grip arrangement which is very complicated in shape. Furthermore, because the coated zirconium alloy confers excellent resistance to oxidation and corrosion under emergency such as accident as well as normal service condition, both the economic and safety aspects of nuclear fuel are improved.
摘要:
Disclosed are a zirconium alloy for a nuclear fuel cladding having a good corrosion resistance by reducing an amount of alloying elements and a method of preparing a zirconium alloy nuclear fuel cladding using thereof. The zirconium alloy includes 0.2 to 0.5 wt % of niobium (Nb); 0.2 to 0.6 wt % of iron (Fe); 0.3 to 0.5 wt % of chromium (Cr); 0.1 to 0.15 wt % of oxygen (O); 0.008 to 0.012 wt % of silicon (Si) and a remaining amount of zirconium (Zr). The total amount of the niobium, the iron and the chromium is 1.1 to 1.2 wt %. A good oxidation resistance of the nuclear fuel cladding may be confirmed under accident conditions as well as normal operating conditions of a reactor, thereby improving economic feasibility and safety.
摘要:
Disclosed are a zirconium alloy for a nuclear fuel cladding having a good oxidation resistance in reactor accident conditions, a zirconium alloy nuclear fuel cladding prepared by using thereof and a method of preparing the same. The zirconium alloy includes 1.0 to 1.2 wt % of niobium (Nb); at least one element selected from tin (Sn), iron (Fe) and chromium (Cr); 0.02 to 0.1 wt % of copper (Cu); 0.1 to 0.15 wt % of oxygen (O); 0.008 to 0.012 wt % of silicon (Si) and a remaining amount of zirconium (Zr). The amount of Sn is 0.1 to 0.3 wt %, the amount of Fe is 0.3 to 0.8 wt %, and the amount of Cr is 0.1 to 0.3 wt %. A good oxidation resistance of the nuclear fuel cladding may be confirmed under accident conditions as well as normal operating conditions of a reactor, thereby improving economic efficiency and safety.
摘要:
The present application discloses a martensitic oxide dispersion-strengthened alloy having enhanced high-temperature strength and creep properties. The alloy includes chromium (Cr) of 8 to 12% by weight, yttria (Y2O3) of 0.1 to 0.5% by weight, carbon (C) of 0.02 to 0.2% by weight, molybdenum (Mo) of 0.2 to 2% by weight, titanium (Ti) of 0.01 to 0.3% by weight, zirconium (Zr) of 0.01 to 0.2% by weight, nickel (Ni) of 0.05 to 0.2% by weight and the balance of iron (Fe). The application also discloses a method of making the alloy.
摘要翻译:本申请公开了具有提高的高温强度和蠕变性能的马氏体分散强化合金。 该合金包括8〜12重量%的铬(Cr),0.1〜0.5重量%的氧化钇(Y 2 O 3),0.02〜0.2重量%的碳(C),0.2〜2重量%的钼(Mo) ,钛(Ti)为0.01〜0.3重量%,锆(Zr)为0.01〜0.2重量%,镍(Ni)为0.05〜0.2重量%,余量为铁(Fe)。 该申请还公开了一种制造该合金的方法。
摘要:
Provided are a ferritic/martensitic oxide dispersion strengthened steel with increased high temperature creep resistance, including 0.02 to 0.2 wt % of carbon (C), 8 to 12 wt % of chromium (Cr), 0.1 to 0.5 wt % of yttria (Y2O3), 0.2 to 2 wt % of molybdenum (Mo), 0.01 to 0.5 wt % of titanium (Ti), 0.01 to 1 wt % of manganese (Mn), 0.01 to 0.3 wt % of vanadium (V), 0 to 0.3 wt % of zirconium (Zr), 0 to 0.5 wt % of nickel (Ni), and the remaining content of iron (Fe), and a method of manufacturing the same. The ferritic/martensitic oxide dispersion strengthened steel may be useful as a material for core structural components of a nuclear power system, ultra supercritical pressure steam generator components of a thermal power plant, or engine components of an airplane due to a high tensile strength at 700° C. and excellent creep resistance.
摘要:
Provided are a ferritic/martensitic oxide dispersion strengthened steel with increased high temperature creep resistance, including 0.02 to 0.2 wt % of carbon (C), 8 to 12 wt % of chromium (Cr), 0.1 to 0.5 wt % of yttria (Y2O3), 0.2 to 2 wt % of molybdenum (Mo), 0.01 to 0.5 wt % of titanium (Ti), 0.01 to 1 wt % of manganese (Mn), 0.01 to 0.3 wt % of vanadium (V), 0 to 0.3 wt % of zirconium (Zr), 0 to 0.5 wt % of nickel (Ni), and the remaining content of iron (Fe), and a method of manufacturing the same. The ferritic/martensitic oxide dispersion strengthened steel may be useful as a material for core structural components of a nuclear power system, ultra supercritical pressure steam generator components of a thermal power plant, or engine components of an airplane due to a high tensile strength at 700° C. and excellent creep resistance.
摘要翻译:本发明提供耐高温蠕变性提高的铁素体/马氏体分散强化钢,其中,碳(C)为0.02〜0.2重量%,铬(Cr)为8〜12重量%,氧化钇(Y 2 O 3)为0.1〜0.5重量% ,钼(Mo)0.2〜2重量%,钛(Ti)0.01〜0.5重量%,锰(Mn)0.01〜1重量%,钒(V):0.01〜0.3重量%,0:0.3重量% 的锆(Zr),0〜0.5重量%的镍(Ni)和余量的铁(Fe)及其制造方法。 铁素体/马氏体分散强化钢可用作核动力系统的核心结构部件,火力发电厂的超超临界压力蒸汽发生器部件或飞机的发动机部件,由于700的高抗拉强度 °C和优异的抗蠕变性。