Abstract:
The present invention provides an anode for a Molten Carbonate Fuel Cell (MCFC) and a MCFC including the same, particularly an anode for the MCFC coated by a porous ceramic film, when the invention is used, the wettability of the anode to the molten carbonate used as the electrolyte for the MCFC and the amount of impregnated electrolyte will be greatly improved, and thus is very useful in viewpoint that it can prevent any electrolyte loss that is often observed in the long periods of operation of the MCFC, and maintain a high stability of the cell for an extended period of time, compared with the conventional cell. Also, the present invention itself is applicable to an electrode made of Ni-based alloys or metal compounds, which is expected to be competent MCFC materials nowadays, as well as the electrode made of Ni, NinullCr and NinullAl alloy used in the present invention.
Abstract:
The present invention relates to a method for manufacturing composite polymer electrolyte membranes coated with inorganic thin films for fuel cells using a plasma enhanced chemical vapor deposition (PECVD) method or a reactive sputtering method, so as to reduce the crossover of methanol through polymer electrolyte membranes for fuel cells and enhance the performance of the fuel cells. The manufacturing method of composite polymer electrolyte membranes coated with inorganic thin films for fuel cells according to the present invention is characterized to obtain composite membranes by coating the surface of commercial composite polymer electrolyte membranes for fuel cells with inorganic thin films using a PECVD method or a reactive sputtering method. The inorganic materials to form the inorganic thin films are chosen one or more from the group comprising silicon oxide (SiO2), titanium oxide (TiO2), zirconium oxide (ZrO2), zirconium phosphate (Zr(HPO4)2), zeolite, silicalite, and aluminum oxide (Al2O3). The present invention, by coating the polymer electrolyte membranes for fuel cells with inorganic thin films via a PECVD method or a reactive sputtering method, reduces the methanol crossover sizably without seriously reducing the ionic conductivity of polymer electrolyte membranes, thereby, when applied to fuel cells, realizes a high performance of fuel cells.
Abstract:
Disclosed is an electrode having a novel configuration for improving performance of the electrode used in solid-oxide fuel cells, sensors and solid state devices, in which the electrode providing electron conductivity is coated with ion conductive ceramic ceria film, enabling an electron conductive path and an ion conductive path to be independently and continuously maintained, and additionally extending a triple phase boundary where electrode/electrolyte/gas are in contact, and a method for manufacturing the same. The electrode is manufactured by coating the prefabricated electrode for use in a SOFC or sensor with a porous oxygen ion conductive ceramic ceria film by a sol-gel method, whereby the electron conductive material and ion conductive material exist independently, having a new microstructure configuration with a greatly extended triple phase boundary, thus improving electrode performance. Accordingly, such electrode does not require high cost equipment or starting materials, owing to the sol-gel method by which low temperature processes are possible. Moreover, the electrode microstructure can be controlled in an easy manner, realizing economic benefits, and the electrode/electrolyte interfacial resistance and electrode resistance can be effectively decreased, thereby improving performance of electrodes used in SOFCs, sensors and solid state devices.