Squared Weil and Tate pairing techniques for use with elliptic curves
    1.
    发明授权
    Squared Weil and Tate pairing techniques for use with elliptic curves 有权
    用于椭圆曲线的平方魏和泰特配对技术

    公开(公告)号:US07729494B2

    公开(公告)日:2010-06-01

    申请号:US11942618

    申请日:2007-11-19

    IPC分类号: H04K1/00

    摘要: Methods and apparati are provided for use in determining “Squared Weil pairings” and/or “Squared Tate Pairing” based on an elliptic curve, for example, and which are then used to support cryptographic processing of selected information. Significant improvements are provided in computing efficiency over the conventional implementation of the Weil and Tate pairings. The resulting Squared Weil and/or Tate pairings can be substituted for conventional Weil or Tate pairings in a variety of applications.

    摘要翻译: 提供了方法和装置,用于例如基于椭圆曲线确定“平方魏配对”和/或“平方ate对配对”,然后用于支持所选信息的加密处理。 与传统的Weil和Tate配对相比,计算效率得到了显着改善。 所得到的平方魏和/或泰特对可以替代常规的Weil或Tate配对在各种应用中。

    Tate pairing techniques for use with hyperelliptic curves
    2.
    发明授权
    Tate pairing techniques for use with hyperelliptic curves 有权
    用于超椭圆曲线的Tate配对技术

    公开(公告)号:US07440569B2

    公开(公告)日:2008-10-21

    申请号:US10628729

    申请日:2003-07-28

    IPC分类号: H04L9/00

    摘要: Methods and apparati are provided for determining a “Squared Tate pairing” for hyperelliptic curves and using the results to support at least one cryptographic process. The improved techniques provide increased efficiency and an alternative method to the conventional method of implementing the Tate pairing for Jacobians of hyperelliptic curves. With the Squared Tate pairing for hyperelliptic curves, one may obtain a significant speed-up over a contemporary implementation of the Tate pairing for hyperelliptic curves. The Squared Tate pairing for hyperelliptic curves can be substituted for the Tate pairing for hyperelliptic curves in any applicable cryptographic application.

    摘要翻译: 提供了用于确定超椭圆曲线的“平方泰特配对”的方法和设备,并使用结果来支持至少一个加密过程。 改进的技术提供了提高效率和替代方法来实现对于超椭圆曲线的Jacobians的Tate配对的传统方法。 对于超椭圆曲线的平方泰特配对,可以比超椭圆曲线的Tate配对的当代实现获得显着的加速。 在任何适用的加密应用程序中,用于超椭圆曲线的平方泰特配对可以替代超椭圆曲线的Tate配对。

    Squared Weil and Tate pairing techniques for use with elliptic curves
    3.
    发明授权
    Squared Weil and Tate pairing techniques for use with elliptic curves 有权
    用于椭圆曲线的平方魏和泰特配对技术

    公开(公告)号:US07298839B2

    公开(公告)日:2007-11-20

    申请号:US10626948

    申请日:2003-07-25

    IPC分类号: H04L9/30

    摘要: Methods and apparati are provided for use in determining “Squared Weil pairings” and/or “Squared Tate Pairing” based on an elliptic curve, for example, and which are then used to support cryptographic processing of selected information. Significant improvements are provided in computing efficiency over the conventional implementation of the Weil and Tate pairings. The resulting Squared Weil and/or Tate pairings can be substituted for conventional Weil or Tate pairings in a variety of applications.

    摘要翻译: 提供了方法和装置,用于例如基于椭圆曲线确定“平方魏配对”和/或“平方ate对配对”,然后用于支持所选信息的加密处理。 与传统的Weil和Tate配对相比,计算效率得到了显着改善。 所得到的平方魏和/或泰特对可以替代常规的Weil或Tate配对在各种应用中。

    Cryptographically processing data based on a Cassels-Tate pairing
    4.
    发明授权
    Cryptographically processing data based on a Cassels-Tate pairing 有权
    基于Cassels-Tate配对密码处理数据

    公开(公告)号:US07639799B2

    公开(公告)日:2009-12-29

    申请号:US11011289

    申请日:2004-12-14

    IPC分类号: H04L9/30 H04L9/32

    CPC分类号: H04L9/3073 H04L9/3247

    摘要: Systems and methods for cryptographically processing data as a function of a Cassels-Tate pairing are described. In one aspect, a Shafarevich-Tate group is generated from a cohomology group. A Cassels-Tate pairing is determined as a function of elements of the Shafarevich-Tate group. Data is then cryptographically processed as a function of the Cassels-Tate pairing.

    摘要翻译: 描述了用于密码处理作为Cassels-Tate配对的函数的数据的系统和方法。 在一个方面,Shafarevich-Tate组由同源组组成。 Cassels-Tate配对是根据Shafarevich-Tate组的要素确定的。 然后将数据作为Cassels-Tate配对的函数进行加密处理。

    Weil and Tate pairing techniques using parabolas
    5.
    发明授权
    Weil and Tate pairing techniques using parabolas 有权
    Weil和Tate配对技术使用抛物线

    公开(公告)号:US07769167B2

    公开(公告)日:2010-08-03

    申请号:US10627281

    申请日:2003-07-25

    IPC分类号: H04L9/30

    CPC分类号: G06F7/725 H04L9/3073

    摘要: Methods and apparati are provided for use in cryptographically processing information based on elliptic and other like curves. The methods and apparati allow pairings, such as, for example, Weil pairings, Tate Pairings, Squared Weil pairings, Squared Tate pairings, and/or other like pairings to be determined based on algorithms that utilize a parabola. The methods and apparati represent an improvement over conventional algorithms since they tend to me more computationally efficient.

    摘要翻译: 提供了基于椭圆和其他类似曲线的密码处理信息的方法和装置。 方法和设备允许基于使用抛物线的算法确定配对,例如Weil配对,Tate Pairings,Squared Weil配对,Squared Tate配对和/或其他类似配对。 这些方法和设计代表了对传统算法的改进,因为它们对我来说更有计算效率。

    Squared Weil and Tate Pairing Techniques for Use with Elliptic Curves
    6.
    发明申请
    Squared Weil and Tate Pairing Techniques for Use with Elliptic Curves 有权
    与椭圆曲线一起使用的平方魏和Tate配对技术

    公开(公告)号:US20080137839A1

    公开(公告)日:2008-06-12

    申请号:US11942618

    申请日:2007-11-19

    IPC分类号: H04L9/28

    摘要: Methods and apparati are provided for use in determining “Squared Weil pairings” and/or “Squared Tate Pairing” based on an elliptic curve, for example, and which are then used to support cryptographic processing of selected information. Significant improvements are provided in computing efficiency over the conventional implementation of the Weil and Tate pairings. The resulting Squared Weil and/or Tate pairings can be substituted for conventional Weil or Tate pairings in a variety of applications.

    摘要翻译: 提供了方法和装置,用于例如基于椭圆曲线确定“平方魏配对”和/或“平方ate对配对”,然后用于支持所选信息的加密处理。 与传统的Weil和Tate配对相比,计算效率得到了显着改善。 所得到的平方魏和/或泰特对可以替代常规的Weil或Tate配对在各种应用中。

    Trapdoor pairings
    7.
    发明授权
    Trapdoor pairings 失效
    Trapdoor配对

    公开(公告)号:US08180047B2

    公开(公告)日:2012-05-15

    申请号:US11275560

    申请日:2006-01-13

    IPC分类号: H04L9/00

    CPC分类号: H04L9/3073

    摘要: Systems and methods are described for trapdoor pairing. In one implementation, a trapdoor pairing is a cryptographic primitive generated by determining a bilinear pairing between an elliptic curve group and another group and selecting a parameter of the bilinear pairing, such as a group order or an isogeny between curves, to be a key for generating and evaluating the bilinear pairing. Trapdoor pairing allows construction of a group in which the Decisional Diffie-Hellman (DDH) problem is computationally infeasible given only the description of the group, but is easy given the secret key. Exemplary trapdoor pairing constructions have general applicability to cryptography and also lend themselves more specifically to certain special practical implementations, such as public key cryptography and certificate authority infrastructures.

    摘要翻译: 描述了用于陷门配对的系统和方法。 在一个实现中,陷门配对是通过确定椭圆曲线组和另一组之间的双线性配对并且选择双线性配对的参数(诸如曲线之间的组次序或等值线)来生成的密码原语作为关键 生成和评估双线性配对。 陷阱配对允许建立一个组,其中决策Diffie-Hellman(DDH)问题在计算上是不可行的,只给出该组的描述,但是很容易给出秘密密钥。 示例性的门锁配对结构具有对密码学的一般适用性,并且还更具体地涉及某些特殊的实际实现,例如公共密钥加密和证书颁发机构的基础设施。

    Contextual and Semantic Differential Backup
    8.
    发明申请
    Contextual and Semantic Differential Backup 有权
    语境和语义差异备份

    公开(公告)号:US20110145198A1

    公开(公告)日:2011-06-16

    申请号:US12639430

    申请日:2009-12-16

    IPC分类号: G06F17/30

    CPC分类号: G06F17/3023

    摘要: A backup system that utilizes contextual and semantic concepts is described. The backup system provides for the ability to create a version changes log for listing and tracking all the changes in the different versions of the file. The version changes log creates a contextual description around the changes, deletions and additions. The semantic concept log is created from the version changes log to create a log of all of the semantic concepts associated with each change. A visualization builder then creates visualizations that can be used by the user to search for changes, deletions and additions whether in a text file or an image file.

    摘要翻译: 描述了利用上下文和语义概念的备份系统。 备份系统提供创建版本更改日志的功能,以列出和跟踪文件不同版本中的所有更改。 版本更改日志创建一个关于更改,删除和添加的上下文描述。 语义概念日志是从版本更改日志创建的,以创建与每个更改相关联的所有语义概念的日志。 然后,可视化构建器创建可视化,用户可以使用这些可视化来搜索文本文件或图像文件中的更改,删除和添加。

    Pseudorandom number generation with expander graphs
    9.
    发明授权
    Pseudorandom number generation with expander graphs 有权
    具有扩展器图的伪随机数生成

    公开(公告)号:US07907726B2

    公开(公告)日:2011-03-15

    申请号:US11275629

    申请日:2006-01-19

    IPC分类号: G06F7/58

    CPC分类号: G06F7/582 H04L9/0662

    摘要: Pseudorandom numbers may be generated from input seeds using expander graphs. Expander graphs are a collection of vertices that are interconnected via edges. Generally, a walk around an expander graph is determined responsive to an input seed, and a pseudorandom number is produced based on vertex names. Specifically, a next edge, which is one of multiple edges emanating from a current vertex, is selected responsive to an extracted seed chunk. The next edge is traversed to reach a next vertex. The name of the next vertex is ascertained and used as a portion of the pseudorandom number being produced by the walk around the expander graph.

    摘要翻译: 可以使用扩展器图从输入种子生成伪随机数。 扩展器图是通过边缘互连的顶点的集合。 通常,响应于输入种子确定围绕扩展器图形的步行,并且基于顶点名称产生伪随机数。 具体地,响应于提取的种子块选择作为从当前顶点发出的多个边缘之一的下一个边缘。 遍历下一个边以到达下一个顶点。 确定下一个顶点的名称,并将其用作由扩展器图形围绕生成的伪随机数的一部分。

    Computing endomorphism rings of Abelian surfaces over finite fields
    10.
    发明授权
    Computing endomorphism rings of Abelian surfaces over finite fields 失效
    计算有限域中阿贝尔面的同态环

    公开(公告)号:US07885406B2

    公开(公告)日:2011-02-08

    申请号:US11548016

    申请日:2006-10-10

    IPC分类号: H04L9/00

    CPC分类号: G06F7/724

    摘要: Computing endomorphism rings of Abelian surfaces over finite fields is described. In one aspect, an endomorphism ring of an Abelian surface over a finite field is probabilistically computed. A genus-two curve is generated based on the probabilistically determined endomorphism ring. The genus-2 curve is used for encryption and decryption operations and a cryptosystem.

    摘要翻译: 描述了在有限域上计算阿贝利面的同态环。 在一个方面,概率地计算有限域上的阿贝尔表面的同态环。 基于概率确定的同胚环产生属二曲线。 第2类曲线用于加密和解密操作以及密码系统。