摘要:
The present invention provides a fiber Bragg Grating sequential writing method with real-time optical fiber position monitoring, characterized in that the relative phase between a fiber grating and a writing interference beam at each positioning point is determined by an interferometric side-diffraction method, and writing is sequentially performed. Accuracy in fabricating a long and complex fiber grating structure can be increased by decreasing or avoiding accumulative errors caused by long-term scan of monitoring optical fiber position, or by a means for fabricating a wanted reference fiber Bragg grating with similar settings.
摘要:
The present invention provides a fiber Bragg Grating sequential writing method with real-time optical fiber position monitoring, characterized in that the relative phase between a fiber grating and a writing interference beam at each positioning point is determined by an interferometric side-diffraction method, and writing is sequentially performed. Accuracy in fabricating a long and complex fiber grating structure can be increased by decreasing or avoiding accumulative errors caused by long-term scan of monitoring optical fiber position, or by a means for fabricating a wanted reference fiber Bragg grating with similar settings.
摘要:
The present invention provides a two-beam interference exposure system that can be simply adjusted by rotating only one mirror. By placing a half-wave plate in one of the interference arms and precisely scanning the relative fiber position, the present invention can expose true apodized fiber Bragg gratings in a single scan by simultaneously rotating the angle of the half-wave plate. By rotationally switching the fast and slow axes of the half-wave plate, the present invention can also expose n-phase-shifted fiber grating by the same system.
摘要:
The present invention provides a fabrication method of complex fiber grating structures that can be combined with prior fabrication methods including a phasemask or a two-beam interferometer. By using a rotatable half-wave plate with a polarization beam splitter in the optical path and precisely scanning the relative fiber position, we can expose true complex fiber gratings in a single scan by simultaneously rotating the angle of the half-wave plate.
摘要:
The present invention provides a two-beam interference exposure system that can be simply adjusted by rotating only one mirror. By placing a half-wave plate in one of the interference arms and precisely scanning the relative fiber position, the present invention can expose true apodized fiber Bragg gratings in a single scan by simultaneously rotating the angle of the half-wave plate. By rotationally switching the fast and slow axes of the half-wave plate, the present invention can also expose n-phase-shifted fiber grating by the same system.
摘要:
This specification discloses a light signal interleaver, which can separate a light signal into two light signals with a large interval in between. A birefringent plate is used as a light signal interleaver to separate all wavelengths in a light signal into an O-ray and an E-ray. Therefore, the invention can increase the total transmission capacity under the existent network structure.
摘要:
The invention provides an optical amplifying system having a structure with two amplification levels to amplify received optical signals. The optical amplifying system includes a Michelson interferometer, a preamplifier, and a post amplifier. In the preamplifier and the post-amplifier, respectively have a light pumping source, a wavelength multiplexer, and an optical gain media. The Michelson interferometer includes an optical coupler and an optical grating set composed of a pair of optical gratings. The optical gratings are located different optical passes, and its central wavelength is equal to the intended wavelength. The optical grating can be formed on a piezoelectric substrate or an electrothermal substrate so that the central wavelength can be changed by applying stress or heat. The intended wavelength reflected by the Michelson interferometer can therefore be adjusted. The preamplifier and the post-amplifier are coupled together through the optical coupler of the Michelson interferometer. Furthermore, an isolator can also be coupled between the preamplifier and the Michelson interferometer so as to avoid the backward propagation noise.