Abstract:
An optical pickup includes a light source module in which first and second light sources that emit first and second light beams of different wavelengths are integrated into a single package, an objective lens that focuses the first and second light beams to form a light spot on a recording surface of a recording medium, a light path changer that changes a path along which the first and second light beams propagate, a photodetector that receives the first and second light beams entered via the objective lens and the light path changer and detects an information signal and/or error signal, and an optical element disposed on a path along which the first and second light beams propagate to act as a lens with respect to only one of the first and second light beams so as to correct a position difference along a light propagation direction between the first and second light sources. Accordingly, it possible to correct a position difference along a light propagation axis between the two light sources in the light source module. Obtaining the same light propagation axis is made possible by using the optical element to make the two light propagation axes coincidental or by using a separate optical element to perform this function. This allows the optical pickup to be used for recording as well as for reproducing.
Abstract:
An optical pickup using a two-wavelength light source module includes a light source module, a collimating lens, and a first optical element. The light source module includes first and second light sources which emit first and second light beams of different wavelengths and are formed in a single package. The collimating lens directs the first and/or second light beams into convergent light or divergent light so that the convergent light or the divergent light is incident on the objective lens. The optical pickup is a finite optical system due to the collimating lens. The first optical element is disposed on the traveling paths of the first and second light beams, operates as a lens only for one of the first and second light beams, and corrects a position difference between the first and second light sources along a traveling direction of light. The optical pickup further includes a second optical element which is disposed on the traveling paths of the first and second light beams and matches traveling optical axes of the first and second light beams with each other.
Abstract:
An optical pickup which, when a first light reflected by a recording medium is divided into a central light area and first and second peripheral light areas at both sides of the central light area, divides the first light reflected by the recording medium into at least 6 light areas, and the at least 6 light areas are independently detected from first through sixth light-receiving portions of a photodetector. Hence, the photodetector can detect a tracking error signal whose offset generation due to a shift of an objective lens is insensitive and whose offset generation due to an initial photodetector balance deviation is depressed.
Abstract:
An optical pickup apparatus and an optical recording/reproducing system including the same, the optical pickup apparatus includes at least two optical systems for different types of optical recording media, one of objective lenses of the optical systems being offset from a central line of the optical recording medium, wherein the optical system including the offset objective lens having a diffraction grating diffracting light emitted from a light source to form a main beam and sub-beams, wherein the diffraction grating includes first and second diffraction regions having different grating patterns arranged alternately thereon, and a center of each sub-beam is arranged at a boundary of the first and second diffraction regions of the diffraction grating, and a center of the diffraction grating and an optical axis of the light source are adjusted to be coincided with each other, preventing generation of an alternating current in a Push-Pull signal of the sub-beams.
Abstract:
An optical pickup apparatus and an optical recording/reproducing system including the same, the optical pickup apparatus includes at least two optical systems for different types of optical recording media, one of objective lenses of the optical systems being offset from a central line of the optical recording medium, wherein the optical system including the offset objective lens having a diffraction grating diffracting light emitted from a light source to form a main beam and sub-beams, wherein the diffraction grating includes first and second diffraction regions having different grating patterns arranged alternately thereon, and a center of each sub-beam is arranged at a boundary of the first and second diffraction regions of the diffraction grating, and a center of the diffraction grating and an optical axis of the light source are adjusted to be coincided with each other, preventing generation of an alternating current in a Push-Pull signal of the sub-beams.
Abstract:
An optical pickup for a recording medium includes a light source, an objective lens, a main photodetector, and a front photodetector. The configuration of the optical pickup enables converging or diverging of light to be incident on a plate beam splitter so that light can be received at an effective light receiving region of a front photodetector without interference due to internal reflection occurring in the plate beam splitter. In the alternative, a wedge beam splitter in the optical pickup includes first and second mirror planes at a predetermined angle to transmit and reflect incident light at a predetermined ratio. In the optical pickup, an amount of light that is exactly proportional to an output power of the light source can be detected, where the output power of the light source can be accurately controlled, thereby improving a linearity of the output power of the light source.
Abstract:
An apparatus and method for detecting beam power generated by a plurality of light sources, using a single device. The apparatus includes a light-receiving unit that receives the beam power generated by one of a plurality of light sources, and an amplifying unit that selects a gain, amplifies the beam power received by the light-receiving unit according to the selected gain, and outputs the beam power amplified as a detected beam power. According to the apparatus and method, received beam power (or amplification gain) is amplified by a gain determined according to the characteristics of the respective light sources. Thus, it is possible to provide the detected beam power in consideration of a sufficient dynamic range for the each light source, thereby realizing effective APC.
Abstract:
An apparatus and method for detecting beam power generated by a plurality of light sources, using a single device. The apparatus includes a light-receiving unit that receives the beam power generated by one of a plurality of light sources, and an amplifying unit that selects a gain, amplifies the beam power received by the light-receiving unit according to the selected gain, and outputs the beam power amplified as a detected beam power. According to the apparatus and method, received beam power (or amplification gain) is amplified by a gain determined according to the characteristics of the respective light sources. Thus, it is possible to provide the detected beam power in consideration of a sufficient dynamic range for the each light source, thereby realizing effective APC.
Abstract:
A compatible type optical pickup using a wedge type beam splitter that can record and/or reproduce information on/from optical recording media having different formats. The compatible type optical pickup includes: a first light source that generates and emits a first light beam of a predetermined wavelength; a second light source that generates and emits a second light beam having a different wavelength from that of the first light beam; a wedge type beam splitter disposed in an optical path between the first and second light sources, which changes the traveling paths of the first and second light beams to allow the first and second light beams to travel along the same optical path and minimizes aberrations; a main beam splitter disposed in an optical path between the wedge type beam splitter and an optical recording medium, which changes the traveling paths of incident light beams; an objective lens that focuses the first and second light beams entered via the main beam splitter onto the optical recording medium; and a main photodetector that receives the first and second light beams reflected from the optical recording medium detects an information signal and an error signal.
Abstract:
An apparatus and method for detecting beam power generated by a plurality of light sources, using a single device. The apparatus includes a light-receiving unit that receives the beam power generated by one of a plurality of light sources, and an amplifying unit that selects a gain, amplifies the beam power received by the light-receiving unit according to the selected gain, and outputs the beam power amplified as a detected beam power. According to the apparatus and method, received beam power (or amplification gain) is amplified by a gain determined according to the characteristics of the respective light sources. Thus, it is possible to provide the detected beam power in consideration of a sufficient dynamic range for the each light source, thereby realizing effective APC.