摘要:
An inkjet printhead includes a substrate having an ink chamber which is filled with ink to be ejected, a nozzle plate formed on the substrate in a position corresponding to the ink chamber, and a heat generating resistor installed in the ink chamber and formed of TiNx, where x ranges from 0.2 to 0.5, to generate ink bubbles in the ink by generating heat.
摘要:
A method of fabricating an ink jet head having a metal chamber layer includes preparing a substrate having pressure-generating elements to generate pressure to eject ink ejection. The metal chamber layer to define sidewalls of an ink flow path is then formed on the substrate. A sacrificial layer is formed to fill a region where the ink flow path is to be formed between the sidewalls defined by the metal chamber layer. A nozzle layer having nozzles corresponding to the pressure-generating elements is formed on the metal chamber layer and the sacrificial layer.
摘要:
An inkjet printer head and method of fabricating the same includes a substrate having an ink-feed hole formed at a bottom surface of the substrate, a lower chamber formed at a top surface of the substrate, and a restrictor to fluid communicate between the ink-feed hole and the lower chamber, an oxide layer formed on the substrate, a heater formed on the oxide layer and disposed parallel to the surface of the substrate to cross the lower chamber, a lead electrically connected to the heater, and a nozzle layer disposed on the heater to configure an ink channel together with the lower chamber and having a nozzle at an upper portion of the nozzle layer. The inkjet printer head is capable of improving a thermal efficiency by heating the ink using both surfaces of the heater since the heater is disposed at a center of the ink chamber, and improving characteristics of the heater by making a current density and a current flow uniform since the heater is formed in a straight line without any bent or curved portion.
摘要:
An Inkjet printhead and a method of manufacturing the same. The inkjet printhead includes a substrate having an ink feedhole, a chamber layer formed on the substrate to define an ink chamber filled with ink supplied though the ink feedhole, and a nozzle layer formed on the chamber layer and having one or more nozzles to eject the ink filled in the chamber, wherein the chamber layer and the nozzle layer are made of solid film resists.
摘要:
An inkjet printhead includes a substrate having an ink chamber which is filled with ink to be ejected, a nozzle plate formed on the substrate in a position corresponding to the ink chamber, and a heat generating resistor installed in the ink chamber and formed of TiNx, where x ranges from 0.2 to 0.5, to generate ink bubbles in the ink by generating heat.
摘要:
An inkjet printer head includes a substrate having an ink-feed hole to supply ink stored in a cartridge to an ink chamber and a restrictor in fluid communication with the ink chamber, an oxide layer formed on the substrate, a heater disposed on the oxide layer above the restrictor and having fixed parts disposed on the oxide layer, slopes extending upward and away from the restrictor at an incline, and a parallel part extending between the slopes parallel to the substrate, a lead formed to be in electrical contact with the heater, a chamber layer formed to cover the lead and to define the ink chamber, and a nozzle layer formed on the chamber layer and having a nozzle. In the inkjet printer head, the lifespan of the heater may be extended since the heater is supported by the slopes, which function as a shock absorbing member when ink supply pressure or cavitation force is applied to a surface of the heater. In addition, since the heater does not have a right angle structure, the heater may be formed to have a uniform thickness even when a thin layer used for the heater is formed by a deposition method.
摘要:
An inkjet printer head includes a substrate having a manifold and an ink channel to supply ink, a nozzle plate formed on the substrate, a chamber formed between the substrate and the nozzle plate and extending toward the substrate and the nozzle plate, an electrode formed at an interface between the substrate and the nozzle plate and around the chamber, and a heater having both ends extending in contact with the electrode to be suspended on the chamber in direct contact with the ink and to generate bubbles from both surfaces thereof. The inkjet printer head is capable of improving manufacturing process efficiency by omitting a process of separately forming a heater passivation layer, operating the heater at low electric power by omitting the heater passivation layer, improving integrity of a nozzle by lowering a working voltage, and improving reliability in manufacturing processes by locating the suspended heater to be in parallel with the substrate and the electrode.
摘要:
A method of fabricating an ink jet head having a metal chamber layer includes preparing a substrate having pressure-generating elements to generate pressure to eject ink ejection. The metal chamber layer to define sidewalls of an ink flow path is then formed on the substrate. A sacrificial layer is formed to fill a region where the ink flow path is to be formed between the sidewalls defined by the metal chamber layer. A nozzle layer having nozzles corresponding to the pressure-generating elements is formed on the metal chamber layer and the sacrificial layer.
摘要:
Thermal inkjet printheads and an inkjet image forming apparatus including the thermal inkjet printheads. Each of the thermal inkjet printheads includes a heater that heats ink by directly contacting the ink and is formed of an alloy of Pt—Ru or an alloy of Pt—Ir—X, where X is at least a material selected from the group consisting of Ta, W, Cr, Al, and O.
摘要:
A method of manufacturing a thermal inkjet printhead. The method includes forming on a substrate a chamber layer having an ink chamber, forming a sacrificial layer on the chamber layer wherein the sacrificial layer fills the ink chamber, and planarizing a top surface of the sacrificial layer and of the chamber layer using a primary Chemical Mechanical Polishing (CMP) process until the sacrificial layer and the chamber layer attain a desired height, wherein a slurry is used in the primary CMP process that includes polishing particles having an average particle size of 500 nm˜2 μm.