Convolution neural network based landmark tracker

    公开(公告)号:US11227145B2

    公开(公告)日:2022-01-18

    申请号:US16854993

    申请日:2020-04-22

    Applicant: L'Oreal

    Abstract: There are provided systems and methods for facial landmark detection using a convolutional neural network (CNN). The CNN comprises a first stage and a second stage where the first stage produces initial heat maps for the landmarks and initial respective locations for the landmarks. The second stage processes the heat maps and performs Region of Interest-based pooling while preserving feature alignment to produce cropped features. Finally, the second stage predicts from the cropped features a respective refinement location offset to each respective initial location. Combining each respective initial location with its respective refinement location offset provides a respective final coordinate (x,y) for each respective landmark in the image. Two-stage localization design helps to achieve fine-level alignment while remaining computationally efficient. The resulting architecture is both small enough in size and inference time to be suitable for real-time web applications such as product simulation and virtual reality.

    CONVOLUTION NEURAL NETWORK BASED LANDMARK TRACKER

    公开(公告)号:US20200342209A1

    公开(公告)日:2020-10-29

    申请号:US16854993

    申请日:2020-04-22

    Applicant: L'Oreal

    Abstract: There are provided systems and methods for facial landmark detection using a convolutional neural network (CNN). The CNN comprises a first stage and a second stage where the first stage produces initial heat maps for the landmarks and initial respective locations for the landmarks. The second stage processes the heat maps and performs Region of Interest-based pooling while preserving feature alignment to produce cropped features. Finally, the second stage predicts from the cropped features a respective refinement location offset to each respective initial location. Combining each respective initial location with its respective refinement location offset provides a respective final coordinate (x,y) for each respective landmark in the image. Two-stage localization design helps to achieve fine-level alignment while remaining computationally efficient. The resulting architecture is both small enough in size and inference time to be suitable for real-time web applications such as product simulation and virtual reality.

    Image-to-image translation using unpaired data for supervised learning

    公开(公告)号:US11995703B2

    公开(公告)日:2024-05-28

    申请号:US18102139

    申请日:2023-01-27

    Applicant: L'OREAL

    Abstract: Techniques are provided for computing systems, methods and computer program products to produce efficient image-to-image translation by adapting unpaired datasets for supervised learning. A first model (a powerful model) may be defined and conditioned using unsupervised learning to produce a synthetic paired dataset from the unpaired dataset, translating images from a first domain to a second domain and images from the second domain to the first domain. The synthetic data generated is useful as ground truths in supervised learning. The first model may be conditioned to overfit the unpaired dataset to enhance the quality of the paired dataset (e.g. the synthetic data generated). A run-time model such as for a target device is trained using the synthetic paired dataset and supervised learning. The run-time model is small and fast to meet the processing resources of the target device (e.g. a personal user device such as a smart phone, tablet, etc.)

Patent Agency Ranking