Abstract:
The present invention relates to a non-aqueous electrolyte for a lithium secondary battery including a pyridine-boron-based compound as an additive and a lithium secondary battery including the same, and particularly, to a non-aqueous electrolyte including at least two types of lithium salts and a pyridine-boron-based compound and a lithium secondary battery which has an enhanced effect of suppressing an increase in resistance and generation of gas after being stored at high temperature by including both the non-aqueous electrolyte and a negative electrode including lithium titanium oxide (LTO) as a negative electrode active material.
Abstract:
The present invention relates to a composition for a gel polymer electrolyte comprising a liquid electrolyte solvent, a lithium salt, a polymerization initiator, and a mixed compound of a first compound and a second compound, and a lithium secondary battery comprising a positive electrode, a negative electrode, a separator, and a gel polymer electrolyte, wherein the gel polymer electrolyte is formed by polymerizing the composition for a gel polymer electrolyte. By comprising a mixed compound of a first compound and a second compound in which the first compound is an amine-based compound comprising polyethylene glycol as a functional group and the second compound is an epoxy-based compound, a composition for a gel polymer electrolyte of the present invention exhibits, when used in a lithium secondary battery, enhanced battery lifespan, excellent high temperature storability, and enhanced battery capacity property by readily inducing a hopping phenomenon.
Abstract:
A method for manufacturing a lithium secondary battery including the steps of manufacturing a lithium secondary battery including an electrode assembly, a non-aqueous electrolyte in which the electrode assembly is impregnated, and a battery case receiving the non-aqueous electrolyte; performing formation of the lithium secondary battery; and performing a degassing process for removing gas generated inside the lithium secondary battery, wherein the non-aqueous electrolyte includes a lithium salt, an organic solvent and 1,2,3-trifluorobenzene as an additive, wherein the 1,2,3-trifluorobenzene is included in an amount of 0.1 wt % to 10 wt % based on the total weight of the non-aqueous electrolyte, and the formation step is performed by charging the state of charge (SOC) of the battery up to 10% to 80%, while applying a voltage of 3.5 V to 4.5 V under a pressure of 0.5 kgf/cm2 to 5 kgf/cm2 at 45° C. to 80° C.
Abstract:
A method for manufacturing a lithium secondary battery including the steps of manufacturing a lithium secondary battery including an electrode assembly, a non-aqueous electrolyte in which the electrode assembly is impregnated, and a battery case receiving the non-aqueous electrolyte; performing formation of the lithium secondary battery; and performing a degassing process for removing gas generated inside the lithium secondary battery, wherein the non-aqueous electrolyte includes a lithium salt, an organic solvent and 1,2,3-trifluorobenzen as an additive, wherein the 1,2,3-trifluorobenzen is included in an amount of 0.1 wt % to 10 wt % based on the total weight of the non-aqueous electrolyte, and the formation step is performed by charging the state of charge (SOC) of the battery up to 10% to 80%, while applying a voltage of 3.5 V to 4.5 V under a pressure of 0.5 kgf/cm2 to 5 kgf/cm2 at 45° C. to 80° C.
Abstract:
The present invention provides a gel polymer electrolyte obtained by polymerizing and gelling a composition for a gel polymer including an organic solvent, an electrolyte salt and a first polymerizable monomer, wherein the gel polymer electrolyte further comprises a compound represented by the following Formula 1 as a first additive: where R1 to R3 are independently hydrogen, an alkyl group having 1 to 5 carbon atoms, an aryl group having 5 to 7 carbon atoms, or a fluorine substituted alkyl group having 1 to 5 carbon atoms, or at least two substituents selected from R1 to R3 are coupled or connected to each other to form a cycle group having a ring atom composed of 2 to 6 carbon atoms or a heterocyclic group having a ring atom composed of 2 to 8 carbon atoms and 1 to 3 oxygen hetero atoms.
Abstract:
The present invention relates to a solid polymer electrolyte formed of a polymer matrix including a lithium ion conductor, and a method of preparing the same. The solid polymer electrolyte of the present invention can be molded in the form of a film and used in an electrochemical device such as a lithium polymer secondary battery or the like.
Abstract:
The present invention provides a gel polymer electrolyte obtained by polymerizing and gelling a composition for a gel polymer including an organic solvent, an electrolyte salt and a first polymerizable monomer, wherein the gel polymer electrolyte further comprises a compound represented by the following Formula 1 as a first additive: where R1 to R3 are independently hydrogen, an alkyl group having 1 to 5 carbon atoms, an aryl group having 5 to 7 carbon atoms, or a fluorine substituted alkyl group having 1 to 5 carbon atoms, or at least two substituents selected from R1 to R3 are coupled or connected to each other to form a cycle group having a ring atom composed of 2 to 6 carbon atoms or a heterocyclic group having a ring atom composed of 2 to 8 carbon atoms and 1 to 3 oxygen hetero atoms.
Abstract:
The present invention relates to a non-aqueous electrolyte for a lithium secondary battery including a pyridine-boron-based compound as an additive and a lithium secondary battery including the same, and particularly, to a non-aqueous electrolyte including at least two types of lithium salts and a pyridine-boron-based compound and a lithium secondary battery which has an enhanced effect of suppressing an increase in resistance and generation of gas after being stored at high temperature by including both the non-aqueous electrolyte and a negative electrode including lithium titanium oxide (LTO) as a negative electrode active material.
Abstract:
Provided are a gel polymer electrolyte including a polymer network, and an electrolyte solution impregnated in the polymer network, wherein the polymer network is formed by combining a first oligomer, which includes unit A derived from a monomer including at least one copolymerizable acrylate or acrylic acid, unit C including urethane, and unit E including siloxane, in a three-dimensional structure, and a lithium secondary battery including the gel polymer electrolyte.
Abstract:
The present invention relates to an electrolyte solution for a lithium secondary battery that includes an additive for forming a stable SEI film and a protective layer on a surface of an electrode to prevent a chemical reaction between the electrolyte solution and the electrode, and a lithium secondary battery having improved life characteristics and high-temperature stability by including the same.