Abstract:
A white organic light emitting device, which is increased in color gamut and lifespan, is discussed and an organic light emitting display device using the same and in a stack having different emission layers disposed in contact with each other, particular properties of a host and a dopant in a major emission layer are used.
Abstract:
A white organic light emitting device including an anode and a cathode opposite to each other, a plurality of stacks disposed between the anode and the cathode, each of the stacks including a hole transport layer, a light emitting layer and an electron transport layer, and an n-type charge generation layer and a p-type charge generation layer disposed between different adjacent stacks, wherein the n-type charge generation layer includes a first organic host, and the p-type charge generation layer includes a second organic host having a LUMO energy level smaller than or equal to a LUMO energy level of the first organic host, and an inorganic dopant containing 1% to 20% by volume of a metal.
Abstract:
A tandem white organic light emitting device having high efficiency and long lifespan by adjusting characteristics of a hole transport layer adjacent to a charge generation layer consisting of p-type and n-type charge generation layer is disclosed, the p-type charge generation layer is formed of organic materials only, and at least one organic material contained in the p-type charge generation layer has a LUMO level of −6.0 eV to −4.5 eV.
Abstract:
Disclosed is an organic light emitting display (OLED) device that may include first and second electrodes facing each other on a substrate, at least two light emitting units between the first and second electrodes, and a charge generation layer between the at least two light emitting units, the charge generation layer including an N-type charge generation layer and a P-type charge generation layer, wherein the N-type charge generation layer includes at least two hosts and a dopant, and wherein the at least two hosts have different lowest unoccupied molecular orbital (LUMO) energy levels.
Abstract:
An organic light emitting diode includes an anode; a cathode facing the anode; a first emitting material layer between the anode and the cathode and including a first host material, the first host material having a first triplet energy; and a hole transporting layer between the first emitting material layer and the anode, a material of the hole transporting layer having a second triplet energy being larger than the first triplet energy.
Abstract:
A light emitting device includes first and second electrodes facing each other on a substrate, a plurality of stacks stacked between the first and second electrodes and each including an EML so as to emit particular light, and a charge generation layer formed between the stacks so as to adjust charge balance therebetween and including an N-type charge generation layer and a P-type charge generation layer, wherein at least any one of the N-type charge generation layer and the P-type charge generation layer includes the same electron transporting material as that of an electron transport layer of one of the stacks that is adjacent to the N-type charge generation layer.
Abstract:
A tandem white organic light emitting device having high efficiency and long lifespan by adjusting characteristics of a hole transport layer adjacent to a charge generation layer consisting of p-type and n-type charge generation layer is disclosed, the p-type charge generation layer is formed of organic materials only, and at least one organic material contained in the p-type charge generation layer has a LUMO level of −6.0 eV to −4.5 eV.
Abstract:
A light emitting device includes first and second electrodes facing each other on a substrate, a plurality of stacks stacked between the first and second electrodes and each including an EML so as to emit particular light, and a charge generation layer formed between the stacks so as to adjust charge balance therebetween and including an N-type charge generation layer and a P-type charge generation layer, wherein at least any one of the N-type charge generation layer and the P-type charge generation layer includes the same electron transporting material as that of an electron transport layer of one of the stacks that is adjacent to the N-type charge generation layer.